Math, asked by Anonymous, 10 months ago

Please answer it quick without spam ​

Attachments:

Answers

Answered by EnchantedGirl
32

GIVEN:- sinx + sin^2 x + sin^3 x = 1.

REQUIRED TO PROVE :- Cos^6 x - 4cos^4x +8cos^2x =4.

PROOF:-

Now,

sinx + sin {}^{2} x + sin {}^{3} x = 1

 =  > sinx(1 + sin {}^{2} x) =  \cos {}^{2} (x)

 =  >  \sin(x) (2 -  \cos {}^{2} (x) )  = cos {}^{2} x

Now,

 =  >  \sin {}^{2} (x) (2 -  \cos {}^{2} (x) ) {}^{2}  =  cos {}^{4} x

 =  > (1 -  \cos {}^{2} (x) )(4 + cos {}^{4} x - 4cos {}^{2} x) = cos {}^{4} x

 =  > 4 + cos {}^{4} x - 4 \cos { }^{2} (x)  - 4 \cos {}^{2} (x)  - cos {}^{6} x + 4cos {}^{2} x =  \cos {}^{4} (x)

Hence,

 =  > cos {}^{6} x - 4cos {}^{4} x + 8 \cos {}^{2} (x)  = 4

HENCE PROVED

HOPE IT HELPS :)

Similar questions