Math, asked by riyadav03oct1980, 1 year ago

please answer ... it's urgent​

Attachments:

Answers

Answered by supriths4804
1

Answer:

4(2+root3)

Step-by-step explanation:

HOPE THIS BRING A SMILE IN YOUR FACE

Attachments:

MOSFET01: when you are taking lcm the value should be root 2
Answered by MOSFET01
13

Solution

 a\: =\: 7\: - \: 4\sqrt{3}

Rationalisation

 \dfrac{1}{a}\: =\: \dfrac{1}{7\: - \: 4\sqrt{3}}\times\dfrac{7\: +\: 4\sqrt{3}}{7\: +\: 4\sqrt{3}}

\dfrac{1}{a}\: =\: \dfrac{7\: + \: 4\sqrt{3}}{(7)^{2}\:-\:(4\sqrt{3})^{2}}

\dfrac{1}{a}\:=\: \dfrac{7\:+\:4\sqrt{3}}{49\: - \: 48}

\dfrac{1}{a}\: =\: 7\: + \: 4\sqrt{3}

 a \: =\: 7\: - \: 4\sqrt{3}

Now,

Simplest Equation

 a\:+\:\dfrac{1}{a}\: =\: 7\:-\cancel{\:4\sqrt{3}}+7\:+\:\cancel{4\sqrt{3}}

 a\:+\:\dfrac{1}{a}\:=\: 7\: +\: 7

 a\:+\:\dfrac{1}{a}\:=\:14

Taking square

\Big(\sqrt{a}\:+\:\dfrac{1}{\sqrt{a}}\Big)^{2}\: =\: a \: +\: \dfrac{1}{a}\: +\: 2\cancel{\sqrt{a}} \times\dfrac{1}{\cancel{\sqrt{a}}}

\Big(\sqrt{a}\:+\:\dfrac{1}{\sqrt{a}}\Big)^{2}\: =\: a \: +\: \dfrac{1}{a}\: + \:2

\sqrt{a}\:+\:\dfrac{1}{\sqrt{a}}\: =\: \sqrt{(14 \:+\:2)}

\sqrt{a}\:+\:\dfrac{1}{\sqrt{a}}\: =\: \sqrt{16}

Answer

\boxed{\sqrt{a}\:+\:\dfrac{1}{\sqrt{a}}\: =\: 4}


EliteSoul: Wow!!
MOSFET01: :) thanks
Similar questions