Math, asked by muskkanbaig28, 1 month ago

Please answer... its urgent. ​

Attachments:

Answers

Answered by Anonymous
0

\huge \bf \pink{ A} \purple{n} \pink{s} \purple{w} \pink{e} \purple{r}

We have , Principal , P = Rs 7500

Time , n = 2 yrs

Amount. A = P 1 + R 100 n

⇒ 9075 = 7500 1 + R 100 2

⇒ 9075 7500 = 1 + R 100 2

⇒ 121 100 = 1 + R 100 2

⇒ 11 10 2 = 1 + R 100 2

⇒ 1 + R 100 = 11 10

⇒ R 100 = 11 10 - 1

⇒ R 100 = 11 - 10 10

⇒ R 100 = 1 10

⇒ R = 10 So , rate of interest is 10.

Answered by Anonymous
0

Let,

 \sf \dfrac{21}{x}  +  \dfrac{47}{y}  = 110 \:  \:  \:  \:  \:  -  -  -  - (1)

  \sf\dfrac{27}{x}  +  \dfrac{21}{y}  = 162 \:  \:  \:  \:  \:  -  -  -  - (2)

On Solving Equation .(1)

 { \:  \:  \:  \:  \:  \implies \sf \dfrac{21}{x}  +  \dfrac{47}{y}  = 110}

{ \:  \:  \:  \:  \:  \implies \sf \dfrac{21y + 47x}{xy}   = 110}

{ \:  \:  \:  \:  \:  \implies \sf 21y + 47x  = 110  xy }

Multiplying both sides by 27.

{ \:  \:  \:  \:  \:  \implies \sf 27(21y + 47x)  = 27(110  xy) }

{ \:  \:  \:  \:  \:  \implies \sf 576y + 1296x  = 2970  xy \:  \:  \:  \:  \:  -  -  -  - (3)}

On Solving Equation (2)

 {  \:  \:  \:  \:  \:  \implies\sf\dfrac{27}{x}  +  \dfrac{21}{y}  = 162}

{ \:  \:  \:  \:  \:  \implies \sf \dfrac{27y + 21x}{xy}   = 162}

{ \:  \:  \:  \:  \:  \implies \sf 27y + 21x   = 162xy }

Multiplying both sides by 21.

{ \:  \:  \:  \:  \:  \implies \sf 21(27y + 21x)   = 21(162xy) }

{ \:  \:  \:  \:  \:  \implies \sf 567y + 441x   = 3402xy \:  \:  \:  \:  \:  -  -  -  - (4)}

On Subrtracting Equation 3 and 4 .

{ \:  \:  \:  \:  \:  \implies \sf 567y + 1296x  - ( 567y + 441x )  = 2970  xy  - (3402xy)}

{ \:  \:  \:  \:  \:  \implies \sf  \cancel{567y} + 1296x   \cancel{- 567y}  -  441x   = 2970  xy  - 3402xy}

{ \:  \:  \:  \:  \:  \implies \sf  855x   = 432xy}

Similar questions