Please answer .
Jawab ata ho to do nahi to apni ungliyo ko kasht mat dena
Answers
AnswEr :
Given Expression,
Multiplying and Dividing by e^x + 1, we get :
Let e^x = u.
Differentiating w.r.t x on both sides,
Therefore,
We know that,
log(a) - log(b) = log(a/b)
Thus,
Option (3) is correct.
Step-by-step explanation:
AnswEr :
Given Expression,
\displaystyle \sf \: l = \int \dfrac{dx}{ {e}^{x} - 1}l=∫
e
x
−1
dx
Multiplying and Dividing by e^x + 1, we get :
\begin{gathered} \implies \displaystyle \sf \: l = \int \dfrac{dx}{ {e}^{x} - 1} \times \dfrac{ {e}^{x} }{e {}^{x} } \\ \\ \implies \displaystyle \sf \: l = \int \dfrac{ {e}^{x}}{ {e}^{2x} - {e}^{x} } dx\end{gathered}
⟹l=∫
e
x
−1
dx
×
e
x
e
x
⟹l=∫
e
2x
−e
x
e
x
dx
Let e^x = u.
Differentiating w.r.t x on both sides,
\begin{gathered} \longrightarrow \sf \: \dfrac{du}{dx} = \dfrac{d( {e}^{x} )}{dx} \\ \\ \longrightarrow \sf \: dx = \dfrac{du}{e {}^{x} } \end{gathered}
⟶
dx
du
=
dx
d(e
x
)
⟶dx=
e
x
du
Therefore,
\begin{gathered}\implies \displaystyle \: \sf \: l = \int \dfrac{ {e}^{x}}{ {u}^{2} - u } \times \dfrac{du}{e {}^{x} } \\ \\ \implies \displaystyle \: \sf \: l = \int \dfrac{u - (u - 1)}{ {u}^{2} - u } du \\ \\ \implies \displaystyle \: \sf \: l = \int \dfrac{du}{u - 1} - \int \dfrac{du}{u} \\ \\ \implies \sf \: l = log(u - 1) - log_{}(u) \end{gathered}
⟹l=∫
u
2
−u
e
x
×
e
x
du
⟹l=∫
u
2
−u
u−(u−1)
du
⟹l=∫
u−1
du
−∫
u
du
⟹l=log(u−1)−log
(u)
We know that,
log(a) - log(b) = log(a/b)
Thus,
\begin{gathered}\implies \sf l = log \bigg( \dfrac{u - 1}{u} \bigg) \\ \\ \sf \implies l = log \bigg( \dfrac{e {}^{x} - 1}{ {e}^{x} } \bigg) \\ \\ \implies \boxed{ \boxed{\sf l = log |1 - {e}^{ - x} | + c}}\end{gathered}
⟹l=log(
u
u−1
)
⟹l=log(
e
x
e
x
−1
)
⟹
l=log∣1−e
−x
∣+c
Option (3) is correct.