Math, asked by mukundkumar25, 3 months ago

Please answer just now ​

Attachments:

Answers

Answered by aditirajput1609
2

Step-by-step explanation:

Answer and solution given in above picture

Attachments:
Answered by SƬᏗᏒᏇᏗƦƦᎥᎧƦ
70

Question given:

  •  \sf{  \large{\displaystyle\int{}}\dfrac{dx}{sin {}^{2} xcos {}^{2} x} }

Solution:

Here I is calculas,

  • : \longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{dx}{sin {}^{2} xcos {}^{2} x} }

Putting (sec²)²x in numerator,

: \longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{(sec {}^{2}) {}^{2} x }{sin {}^{2} xcos {}^{2} x} \: dx }

Dividing cos⁴ in numerator,

: \longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{(sec {}^{2}) {}^{2} x }{sin {}^{2} xcos {}^{2} x   \: \div   \: cos {}^{4} } \: dx }

: \longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{(sec {}^{2}) {}^{2} x }{sin {}^{2} xcos {}^{2} x \times  \dfrac{1}{cos {}^{4} } } \: dx }

:\longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{(sec {}^{2}) {}^{2} x }{sin {}^{2} x \cancel{cos {}^{2}} x \times  \dfrac{1}{ \cancel{cos {}^{4} }} } \: dx }

:\longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{(sec {}^{2}) {}^{2} x }{sin {}^{2} x \:  \times  \: \dfrac{1}{cos {}^{2} }  } \: dx }

:\longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{(sec {}^{2}) {}^{2} x }{ \dfrac{sin {}^{2}x }{cos {}^{2}x }  } \: dx }

We know that,

  • \boxed{ \sf{  \dfrac{sin {}^{2} }{cos {}^{2}  } \:   = \: tan {}^{2} x }}

By using it we gets,

:\longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{(sec {}^{2})  }{tan {}^{2}x } \: dx }

:\longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{(sec {}^{2}  ) {}^{2}x   }{tan {}^{2}x } \: dx }

:\longmapsto \: \sf{ I \:  = \:  \large{\displaystyle\int{}}\dfrac{sec {}^{2}  x   \times sec {}^{2}x  }{tan {}^{2}x } \: dx }

Using,

  • \boxed{ \sf{sec {}^{2}x  \: =   \: 1 + tan {}^{2} x}}

Substituting the value of sec²x as 1 + tan²x,

:\longmapsto \: \sf{ I \:  = \:  \large{ \displaystyle\int{}}\dfrac{(1 + tan {}^{2} x) sec {}^{2}x  }{tan {}^{2}x } \: dx }

  • Also assuming that tanx as t , sec²x dx as dt and cot x as 1/2. It would ease our calculations. tan²x would become because tan²x is in square and substituting them,

:\longmapsto \: \sf{ I \:  = \:  \large{ \displaystyle\int{}}\dfrac{(1 + t {}^{2}) dt}{t{}^{2}} \:  }

Now seperating them and forming two different fractions,

:\longmapsto \: \sf{ I \:  = \:  \large{ \displaystyle\int{}}dt \:  +  \:   \displaystyle \int{} \dfrac{dt}{t {}^{2} } }

Now it would become,

:\longmapsto \: \sf{ I \:  = \:  \large{t \:   -   \:  \dfrac{1}{t  }  \:  +  \: C \: } }

As we have assumed,

  • tan x as t
  • 1/t as cotx

Substituting them,

:\longmapsto \:  \underline{ \boxed{\sf{ I \:  = \:  \large{tan \: x\:   -   \:  cot \: x \:  +  \: C \: } }}}

\therefore   \underline{\bf{tan \: x\:   -   \:  cot \: x \:  +  \: C \: is \: the \: required \: answer}}

Similar questions