Math, asked by sumiransingh07, 6 months ago

Please answer me . ​

Attachments:

Answers

Answered by Anonymous
4

ANSWER

\large\underline\bold{GIVEN,}

\dashrightarrow \angle AOB= x+2

\dashrightarrow \angle BOC =2x+16

\dashrightarrow \angle COD= 3x

\large\underline\bold{TO\:FIND,}

\dashrightarrow Value\:of\: \angle BOC

\large\underline\bold{SOLUTION,}

\dashrightarrow first\:finding\:the\:value\:of\:x

\therefore by\:angle\:some\:property,

\dashrightarrow \angle AOB+ \angle BOC+ \angle COD = 180\degree

\implies (x+2)+(2x+16)+3x=180\degree

\implies x+2x+3x+2+16=180\degree

\implies 6x+18=180\degree

\implies 6x=180-18

\implies 6x= 162

\implies x= \dfrac{162}{6}

\implies x= \cancel\dfrac{162}{6}

\implies x= 27

\large{\boxed{\bf{ \star\:\:x=27\degree \:\: \star}}}

NOW,SUBSTITUTING VALUE OF x ,

we get,

\implies \angle BOC= 2x+16\\ \implies 2(27)+16\\ \implies 54+16\\ \implies 70\degree

\large{\boxed{\bf{ \star\:\: \angle BOC= 70\degree\:\: \star}}}

\large\underline\bold{VALUE\:OF\: \angle BOC\:IS\:70\degree}

_____________

Answered by Anonymous
6

given:-

\dashrightarrow \angle AOB= x+2

\dashrightarrow \angle BOC =2x+16

\dashrightarrow \angle COD= 3x

To find:-

\dashrightarrow Value\:of\: \angle BOC

Answer:-

VALUE OF < BOC IS 70°

explanation in details:-

\dashrightarrow first\:finding\:the\:value\:of\:x

\dashrightarrow \angle AOB+ \angle BOC+ \angle COD = 180\degree

\implies (x+2)+(2x+16)+3x=180\degree

\implies x+2x+3x+2+16=180\degree

\implies 6x+18=180\degree

\implies 6x=180-18

\implies 6x= 162

\implies x= \dfrac{162}{6}

\implies x= \cancel\dfrac{162}{6}

\implies x= 27

\large{\boxed{\bf{ x=27\degree}}}

NOW,SUBSTITUTING VALUE OF x ,

we get,

\implies \angle BOC= 2x+16\\ \implies 2(27)+16\\ \implies 54+16\\ \implies 70\degree

\large{\boxed{\bf{  \angle BOC= 70\degree}}}

\rm\underline\bold{\pink{VALUE\:OF\: \angle BOC\:IS\:70\degree}}

Similar questions