Math, asked by priyanshkumar1209, 2 months ago

Please answer me fast ​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

Since, the given function is continuous at x = 0, so LHL and RHL at x=0 will be equal,

So,

LHL =  \lim_{h \rarr0} f(0 - h) =  \lim_{h \rarr0}a \sin \{ \frac{\pi}{2} ( - h + 1) \} \\

 =  \lim _{h \rarr0}a \sin( \frac{\pi}{2} )  = a \\

RHL =  \lim_{ h \rarr0}  f(0 + h) =  \lim_{h \rarr0}  \frac{ \tan(h) -  \sin(h)  }{ {h}^{3} }  \\

 =  \lim_{h \rarr0}  \frac{ \sec ^{2} (h) -  \cos(h)  }{ 3{h}^{2} }  \\

 =  \lim_{h \rarr0}  \frac{2 \sec ^{2} (h) \tan(h)   +   \sin(h)  }{ 6h }  \\

 =  \lim_{h \rarr0}  \frac{2 \sec ^{2} (h) \tan(h)   }{ 6h }  +  \lim _{h \rarr0} \frac{ \sin(h) }{6h}  \\

 =  \frac{1}{3}  \lim_{h \rarr0}  \frac{\tan(h)   }{ h }  +  \frac{1}{6}  \lim _{h \rarr0} \frac{ \sin(h) }{h}  \\

 =  \frac{1}{2}  \\

Since, LHL = RHL, so

 a= \frac{1}{2}\\

Similar questions