Math, asked by pushpendra49, 1 year ago

please answer me fast anyone ​

Attachments:

Answers

Answered by isafsafiya
1

Step-by-step explanation:

given------>

P =1000

r = 8%

si \: for \: 1st \: year \\  \\ si =  \frac{p \times n \times r}{100}  \\  \\ si =  \frac{1000 \times 8 \times 1}{100}  \\  \\ si = 80 \\  \\  \\ for \: 2nd \: year \\  \\ si =  \frac{p \times n \times r}{100}  \\  \\ si =  \frac{1000 \times 8 \times 2}{100}  \\  \\ si = 160 \\  \\ for \: 3rd \: year \\  \\ si =  \frac{p \times n \times r}{100}  \\  \\ si =  \frac{1000 \times 8 \times 3}{100}  \\  \\ si = 240 \\  \\  \\ now \: for \: c.i \\  \\  \\ for \: 1st \: year \\  \\ a = p  \times(1 +   { \frac{r}{100} })^{n} \\  \\  a = 1000 \times  ({1 +  \frac{8}{100} })^{1}  \\  \\ a = 1000 \times  \frac{108}{100}  \\  \\ a = 1080 \\  \\ c.i = a - p \\  \\c. i = 1080 - 1000 \\  \\ 80 \\  \\  \\ for \: 2nd \: year \\  \\ a = p  \times(1 +   { \frac{r}{100} })^{n} \\  \\ a = 1000 \times (1 +  \frac{8}{100}  ){}^{2} \\  \\  \\ a = 1000 \times  \frac{108}{100}   \times  \frac{108}{100}  \\  \\  \frac{108 \times 108}{10}  \\  \\ 1166.4 \\  \\ ci \:  = 1166.4 - 1000 \\  \\c i = 166.4 \\  \\  \: fr \: 3rd \: year \\  \\  \\ a = p  \times(1 +   { \frac{r}{100} })^{n} \\  \\ a \:  = 1000 \times (1 +  \frac{8}{100}  {})^{3}  \\  \\ a = 1000 \times  \frac{108}{100}  \times  \frac{108}{100}  \times  \frac{108}{100}  \\  \\ a =  \frac{108 \times 108 \times 108}{1000}  \\  \\ a =  \frac{1259712}{1000}  \\  \\ 1259.712 \\  \\ ci = 1259.712 - 1000 \\  \\ ci \:  = 259.712

Similar questions