Math, asked by amantedelaluna5, 1 month ago



please answer me fast...
it is urgent...
help me!!!!

Attachments:

Answers

Answered by MysticSohamS
2

Answer:

hey here is your answer in above pics

pls mark it as brainliest

Attachments:
Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that

\red{\rm :\longmapsto\:ycos\theta  = x}

can be rewritten as

\rm :\longmapsto\:\dfrac{1}{cos\theta }  = \dfrac{y}{x}

On applying Componendo and Dividendo, we get

\rm :\longmapsto\:\dfrac{1 + cos\theta }{1 - cos\theta }  = \dfrac{y + x}{y - x}

On rationalizing the LHS, we get

\rm :\longmapsto\:\dfrac{1 + cos\theta }{1 - cos\theta } \times \dfrac{1 + cos\theta }{1 - cos\theta }   = \dfrac{y + x}{y - x}

\rm :\longmapsto\:\dfrac{ {(1 + cos\theta )}^{2} }{1 -  {cos}^{2} \theta }  = \dfrac{y + x}{y - x}

\red{\bigg \{ \because \: (x + y)(x - y) =  {x}^{2}  -  {y}^{2} \bigg \}}

and

We know,

\boxed{ \rm{  {sin}^{2}\theta  +  {cos}^{2} \theta  = 1}}

Using this, we get

\rm :\longmapsto\:\dfrac{ {(1 + cos\theta )}^{2} }{{sin}^{2} \theta }  = \dfrac{y + x}{y - x}

\rm :\longmapsto\: {\bigg(\dfrac{1 + cos\theta }{sin\theta } \bigg) }^{2}   = \dfrac{y + x}{y - x}

\rm :\longmapsto\: {\bigg(\dfrac{1}{sin\theta } + \dfrac{cos\theta }{sin\theta }  \bigg) }^{2}   = \dfrac{y + x}{y - x}

\rm :\longmapsto\:  {(cosec\theta  + cot\theta )}^{2}    = \dfrac{y + x}{y - x}

\bf\implies \:cosec\theta  + cot\theta  =  \sqrt{\dfrac{y + x}{y - x} }

Hence, Proved

Results used :-

1. Componendo and Dividendo

\boxed{ \rm{ \dfrac{a}{b}  = \dfrac{c}{d} \rm  \: \implies\:\dfrac{a + b}{a - b}  = \dfrac{c + d}{c - d}}}

\boxed{ \rm{  {sin}^{2}\theta  -  {cos}^{2} \theta  = 1}}

\boxed{ \rm{  \frac{cos\theta }{sin\theta } = cot\theta }}

\boxed{ \rm{  \frac{1}{sin\theta }  = cosec\theta }}

Additional Information :-

\boxed{ \rm{  {sec}^{2} \theta  -  {tan}^{2} \theta  = 1}}

\boxed{ \rm{  {cosec}^{2} \theta  -  {cot}^{2} \theta  = 1}}

\boxed{ \rm{ tan\theta  =  \frac{sin\theta }{cos\theta } =  \frac{1}{cot\theta }}}

Similar questions