Math, asked by prithviawana27, 1 month ago

PLEASE ANSWER ME FAST ITS URGENT >>>.
If the zeroes of the polynomial x2 -px + q are in the ratio 2 : 3, prove that 6p2 = 25q.

Answers

Answered by mathdude500
15

\large\underline{\sf{Solution-}}

It is given that zeroes of the polynomial x² - px + q are in the ratio 2 : 3.

Let the zeroes be 2a and 3a.

We know that

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\rm :\implies\:2a + 3a =  -  \: \dfrac{( - p)}{1}

\rm :\longmapsto\:5a = p

\bf\implies \:a = \dfrac{p}{5}  -  -  - (1)

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\rm :\longmapsto\:3a \times 2a = \dfrac{q}{1}

\rm :\longmapsto\: {6a}^{2}  = q

\rm :\longmapsto\:6 {\bigg(\dfrac{p}{5}  \bigg) }^{2} = q

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{ \bigg \{ \because \:a = \dfrac{p}{5}\bigg \}}

\rm :\longmapsto\:6 \times \dfrac{ {p}^{2} }{25} = q

\bf\implies \: {6p}^{2} = 25q

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

  • If Discriminant, D > 0, then roots of the equation are real and unequal.

  • If Discriminant, D = 0, then roots of the equation are real and equal.

  • If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

  • Discriminant, D = b² - 4ac
Similar questions