Math, asked by sahil400022, 7 months ago

please answer me my questions and correct don't fake answer I will report you okay hmmmmm I ​

Attachments:

Answers

Answered by Anonymous
61

Given:

  • Sugandha Paints the Triangle with red
  • She paints the Square with green

Find:

  • The area to be painted by the two colors.

Solution:

we, know that

 \large{ \boxed{ \sf Area \: of \: triangle  \triangle =  \dfrac{1}{2} \times b \times h}}

where,

  • Base = 12m
  • Height = 18 - 12 = 6m

So,

 \dashrightarrow\sf Area \: of \: triangle  \triangle =  \dfrac{1}{2} \times b \times h \\  \\

 \dashrightarrow\sf Area \: of \: triangle  \triangle =  \dfrac{1}{2} \times 12\times 6 \\  \\

 \dashrightarrow\sf Area \: of \: triangle  \triangle =  \dfrac{1}{2} \times 72 \\  \\

 \dashrightarrow\sf Area \: of \: triangle  \triangle =  \dfrac{72}{2}\\  \\

 \dashrightarrow\sf Area \: of \: triangle  \triangle =  36 {m}^{2} \\  \\

  \therefore\sf Area \: of \: triangle  \triangle =  36 {m}^{2}

 \qquad \huge{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  }}

Now, we know that

  \large{\boxed{ \sf Area \: of \: square \square = (side) \times (side)}}

where,

  • Side = 12m

So,

 \dashrightarrow\sf Area \: of \: square \square = (side) \times (side) \\  \\

 \dashrightarrow\sf Area \: of \: square \square = (12) \times (12) \\  \\

 \dashrightarrow\sf Area \: of \: square \square =144 {m}^{2}  \\  \\

 \therefore\sf Area \: of \: square \square =144 {m}^{2}

 \qquad \huge{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  }}

Now, Area of total portion

> Area of triangle + Area of Square

where,

  • Area of triangle = 36m²
  • Area of Square = 144m²

So,

= 36 + 144 = 180m²

= 180m²

 \qquad \huge{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  }}

we, know

  \large{\boxed{ \sf Area \: of \: square= (side) \times (side)}}

where,

  • Side = 1m

So,

 :\to \sf Area \: of \: square= (side) \times (side) \\  \\

 :\to \sf Area \: of \: square= (1) \times (1) \\  \\

 :\to \sf Area \: of \: square=1 {m}^{2} \\  \\

Now, using

  \large{\boxed{ \sf Area \: of \: Rectangle= l \times b}}

where,

  • Length, l = 1m
  • Breadth, b = 3m

So,

:\to\sf Area \: of \: Rectangle= l \times b \\  \\

:\to\sf Area \: of \: Rectangle= 1 \times 3\\  \\

:\to\sf Area \: of \: Rectangle = 3 {m}^{2} \\  \\

Now, area which should not be painted

> Area of Square + Area of Rectangle

where,

  • Area of Square = 1m²
  • Area of Rectangle = 3m²

So,

= 1 + 3 = 4

= 4m²

 \qquad \huge{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  }}

Now, Area which should be Painted

Area of Total portion - Area which should not be painted

180 - 4 = 176m²

176m²

Hence, Area which should be painted by two colors = 176m²

Attachments:
Answered by blackskull66
0

Answer:

Okkkkkkkkkkkkkkkk i will try it

Similar questions