Math, asked by sahil400022, 6 months ago

please answer me my questions and correct don't fake answer I will report you okay ​

Attachments:

Answers

Answered by Anonymous
61

3)

Given:-

  • Parallel sides of Trapezium = 19cm and 13cm
  • Non-parallel sides are equal and each measure as 5cm

Find:-

  • Area of Trapezium

Solution:-

In ∆ABC

▶H² = P² + B² [Pythogoras Theorem]

▶H² = 5² + 4²

▶H² = 25 + 16

▶H² = 41

▶H = √(41)

▶H = 6.40cm

we, know that

 \large{ \underline{\boxed{ \sf Area \: of \: Trapezium =area \: of \: rectangle + 2(area \: of \: triangle)}}}

 \large{ \underline{\boxed{ \sf Area \: of \: rectangle = l \times b}}}

 \large{ \underline{\boxed{ \sf Area \: of \: triangle =  \dfrac{1}{2} \times b \times h}}}

So,

 \dashrightarrow\sf Area \: of \: Trapezium =area \: of \: rectangle + 2(area \: of \: triangle) \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium =l \times b+ 2 \bigg( \dfrac{1}{2} \times b \times h\bigg) \\  \\

where,

  • Breadth, b = 6.40cm
  • Length, l = 19cm
  • Height, h = 6.40cm
  • Base, b = 4cm

So,

 \dashrightarrow\sf Area \: of \: Trapezium =19\times6.40+ 2 \bigg( \dfrac{1}{2} \times 4 \times 6.40\bigg) \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium =121.6+ 2 \bigg( \dfrac{1}{2} \times 4 \times 6.40\bigg) \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium =121.6+ 2 \bigg( \dfrac{1}{2} \times25.6\bigg) \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium =121.6+ 2 \times 12.8 \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium =121.6+ 25.6 \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium =147.2 {cm}^{2}  \\  \\

Hence, Area of given Trapezium = 147.2cm²

____________________________

4)

Given:-

  • Perimeter of Trapezium = 48cm
  • Non-parallel sides = 10cm
  • Height = 8cm

Find:-

  • Area of Trapezium

Solution:-

AD = BC = 10cm

DE = 8cm

➟Perimeter = Sum of all sides

➟Perimeter = AB + BC + CD + DA

where,

Perimeter = 48cm

BC = 10cm = DA = 10cm

So,

➟ 48 = AB + 10 + CD + 10

➟ 48 = AB + CD + 10+10

➟ 48 = AB + CD + 20

➟ 48 - 20 = AB + CD

➟ AB + CD = 28cm

Now, we know that

 \large{ \underline{\boxed{ \sf Area \: of \: Trapezium = \dfrac{1}{2} \times (sum \: of \: parallel \: sides) \times h}}}

where,

  • AB + CD = 28cm
  • DE = 8cm

So,

 \implies\sf Area \: of \: Trapezium = \dfrac{1}{2} \times (AB + CD) \times  DE \\  \\

 \implies\sf Area \: of \: Trapezium = \dfrac{1}{2} \times (28) \times 8 \\  \\

 \implies\sf Area \: of \: Trapezium = \dfrac{1}{2} \times 28 \times 8 \\  \\

 \implies\sf Area \: of \: Trapezium = \dfrac{1}{2} \times224\\  \\

 \implies\sf Area \: of \: Trapezium = \dfrac{224}{2}\\  \\

 \implies\sf Area \: of \: Trapezium = 112 {cm}^{2} \\  \\

Hence, Area of Trapezium = 112cm²

____________________________

5)

Given:-

  • Parallel Sides = 34m and 10m
  • Distance between them = 5m

Find:-

  • Area of Trapezium

Solution:-

we, know that

 \large{ \underline{\boxed{ \sf Area \: of \: Trapezium = \dfrac{1}{2} \times (sum \: of \: parallel \: sides) \times h}}}

where,

  • Sum of parallel sides = (34 + 10)m
  • h = 5m

So,

 \dashrightarrow\sf Area \: of \: Trapezium = \dfrac{1}{2} \times (sum \: of \: parallel \: sides) \times h \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium = \dfrac{1}{2} \times (34 + 10) \times 5 \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium = \dfrac{1}{2} \times (44) \times 5 \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium = \dfrac{1}{2} \times 44 \times 5 \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium = \dfrac{1}{2} \times 220 \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium = \dfrac{220}{2} \\  \\

 \dashrightarrow\sf Area \: of \: Trapezium = 110m^2\\  \\

Hence, Area of Trapezium = 110m²

Attachments:
Similar questions