English, asked by dev6869, 2 months ago

please answer me only any one question solve​

Attachments:

Answers

Answered by diajain01
83

★QUESTION:-

 \frac{sin30 \degree \:  + tan45 \degree - cosec60 \degree}{sec30 \degree + cos60 \degree + cot45 \degree}

{\boxed{\underline{\tt{ \orange{Required \:  \:  answer \:  \:  is  \:  \: as  \:  \: follows:-}}}}}

★WE KNOW:-

  • Sin 30° = 1/2

  • Tan 45° = 1

  • Cosec 60° = 2/√3

  • Sec 30° = 2/✓3

  • Cos 60° = 1/2

  • Cot 45° = 1

NOW, PUTTING THE VALUES IN:-

 :  \implies \sf{ \frac{sin30 \degree \:  + tan45 \degree - cosec60 \degree}{sec30 \degree + cos60 \degree + cot45 \degree} }

 :  \implies \sf \large{ \frac{ \frac{1}{2}  + 1 -  \frac{2}{ \sqrt{3} } }{ \frac{2}{ \sqrt{3} }+  \frac{1}{2}   + 1} }

 :  \implies \sf \large{ \frac{ \frac{ \sqrt{3 + 2 \sqrt{3 - 4} } }{ \cancel{2 \sqrt{3}} } }{ \frac{4 +  \sqrt{3 + 2 \sqrt{3} } }{ \cancel{2 \sqrt{3} }} } }

 :  \implies \sf \large{ \frac{3 \sqrt{3}  - 4}{3 \sqrt{3}  + 4} }

Rationalising

 :  \implies \sf \large{ \frac{3 \sqrt{3}  - 4}{3 \sqrt{3}  + 4} \times  { \frac{3 \sqrt{3}  - 4}{3 \sqrt{3}   - 4} } }

(a + b) (a - b) = a^2 - b^2

 :  \implies \sf \large{ \frac{ {(3 \sqrt{3}  - 4)}^{2} }{ {(3 \sqrt{3}) }^{2}  -  {4}^{2} } }

(a - b)^2 = a^2 + b^2 -2ab

 : \implies \sf \large{ } \frac{ {(3 \sqrt{3}) }^{2} +  {(4)}^{2}  - 2 \times 3 \sqrt{3}  \times 4 }{27 - 16}

 :  \implies \sf \large{ \frac{27 + 16 - 24 \sqrt{3} }{11} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \boxed{ \underline{ \purple{ \large{ \frac{43 - 24 \sqrt{ 3} }{11}}}}}}

Similar questions