Math, asked by TheMiracleQueen, 7 months ago

Please Answer Me This Immediately....

Attachments:

Answers

Answered by Anonymous
37

\underline\mathfrak{\red{AnswEr}}

In ∆XYZ,

Angle X=62°

Angle XYZ=54° .................... you have given in question (text)

angle X + angle xyz + angle Z = 180°............ angle addition property of triangle

62 + 54 + angle Z = 180°

116 + angle z = 180°

angle Z = 180 - 116

angle Z = 64°

OZ is angle bisector of angle XZY

angle OZY = 32°................1

similarly OY is angle bisector of angle XYZ

angle OYZ= 27°................... 2

in triangle OYZ,

angle OYZ+ angle OZY+ angle YOZ=180°............. angle sum property of triangle

27 + 32 + angle YOZ= 180

59 + angle YOZ = 180

angle YOZ= 121°

ANS: angle OZY=32°

angle YOZ= 121°

Answered by Mysterioushine
71

\huge\red{\bold{\underline{\underline{Given:-}}}}

  • In ΔXYZ , ∠X = 62° , ∠Y = 54°
  • YO and ZO are angular bisectors of ∠XYZ , ∠XZY

\huge\blue{\bold{\underline{\underline{To\:Find:-}}}}

  • ∠OZY and ∠YOZ

\huge\green{\bold{\underline{\underline{Solution:-}}}}

∠X + ∠Y + ∠Z = 180° {From Angle sum property }

We have ,

  • ∠X = 62°
  • ∠Y = 54°

\large\rm{\rightarrow{62+54+\angle\:Z\:=\:180}}

\large\rm{\rightarrow{116+\angle\:Z\:=\:180}}

\large\rm{\rightarrow{\angle\:Z\:=\:64}}

Angular bisector are nothing but which seperates the one given angle into two equal parts .

This mean ,

∠XYO = ∠OYZ = Half of ∠Y and

∠XZO = ∠OZY = Half of ∠Z

Half of ∠Y = 54/2 = 27°

\large\rm{\rightarrow{\angle\:XYO\:=\:27\:=\:\angle\:OYZ}}

Half of ∠Z = 64/2 = 32°

\large\rm{\rightarrow{\angle\:XZO\:=\:32\:=\:\angle\:OZY}}

Now In ΔOYZ ,

∠OYZ + ∠YOZ + ∠OZY = 180° { from Angle sum property}

We have ,

  • ∠OZY = 32°
  • ∠OYZ = 27°

\large\rm{\rightarrow{\angle\:YOZ+32+27\:=\:180}}

\large\rm{\rightarrow{\angle\:YOZ+59\:=\:180}}

\large\rm{\rightarrow{\angle\:YOZ\:=\:121}}

∴ ∠YOZ = 121° and ∠OZY = 32°

Attachments:
Similar questions