Please answer me this question?
Attachments:
Answers
Answered by
1
Solution:
Given: DF is tangents to the circle with center O.
∠CAE=62°,∠ACE=43°
To find, value of angle a,b&c<span class="_wysihtml5-temp-placeholder"></span>
In ΔACE,
∠BAE=∠CAE
∠CAE+∠ECA+∠AEC=180° (Angle sum propanderty of triangles)
62°+43°+∠AEC=180°
105°+∠AEC=180°
∠AEC=180°-105°
∠AEC=75°
∴∠CEF=180°-∠AEC (sum of the angles in a straight line equals 180°)
∠CEF=180°-75°
∠CEF=105°
In ΔDEF,
∠DEF+∠EDF+∠DFE=180°
as, ∠DEF=∠CEF,∠DFE=∠BFA
105°+b+c=180°
b+c=180°-105°
b+c=75°....(i)
∠BDC=∠EDF (vertically opposite angles are equal)
∠BCD=180°- ∠ABF (sum of the angles in a straight line equals 180°)
∠BCD=180°- a
In ΔBCD,
∠CBD+∠BCD+∠BDC=180°
43°+(180°-a)+c=180°
223°-a+c=180°
c-a=180°-223°
c-a=-43°
a-c=43°..(ii)
In ΔBCD,
EDF=In ΔBAF ,
∠BAF+∠ABF+∠BFA=180°,
62°+a+b=180°
a+b=180°-62°
a+b=118°..(iii)
by solving the equations,we can get the value of a,b,c.
we get
Given: DF is tangents to the circle with center O.
∠CAE=62°,∠ACE=43°
To find, value of angle a,b&c<span class="_wysihtml5-temp-placeholder"></span>
In ΔACE,
∠BAE=∠CAE
∠CAE+∠ECA+∠AEC=180° (Angle sum propanderty of triangles)
62°+43°+∠AEC=180°
105°+∠AEC=180°
∠AEC=180°-105°
∠AEC=75°
∴∠CEF=180°-∠AEC (sum of the angles in a straight line equals 180°)
∠CEF=180°-75°
∠CEF=105°
In ΔDEF,
∠DEF+∠EDF+∠DFE=180°
as, ∠DEF=∠CEF,∠DFE=∠BFA
105°+b+c=180°
b+c=180°-105°
b+c=75°....(i)
∠BDC=∠EDF (vertically opposite angles are equal)
∠BCD=180°- ∠ABF (sum of the angles in a straight line equals 180°)
∠BCD=180°- a
In ΔBCD,
∠CBD+∠BCD+∠BDC=180°
43°+(180°-a)+c=180°
223°-a+c=180°
c-a=180°-223°
c-a=-43°
a-c=43°..(ii)
In ΔBCD,
EDF=In ΔBAF ,
∠BAF+∠ABF+∠BFA=180°,
62°+a+b=180°
a+b=180°-62°
a+b=118°..(iii)
by solving the equations,we can get the value of a,b,c.
we get
Similar questions
b=96.5
c=64.5