Math, asked by shifarahman2008, 3 months ago

please answer me with solution​

Attachments:

Answers

Answered by lahari60
1

Answer:

square

Step-by-step explanation:

area of square =a²=7*7=49cm²

area of circle =πr²

r=d/2=7/2=3.5

area of circle = 3.14*3.5*3.5=38.465cm²

49>38.465

so,

area of square is greater than area of circle

I hope my answer helps you ☺☺

Answered by IdyllicAurora
30

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

We are given the side of square and diameter of the circle. From this we can find out the radius of the circle. After finding that, firstly we will calculate the areas of both figures and then compare them . Whichever figure will have more area, that will be our answer.

Let's do it !!

_____________________________________________

★ Formula Used :-

\\\;\boxed{\sf{\pink{Area\;of\;Square\;=\;\bf{(Side)^{2}}}}}

\\\;\boxed{\sf{\pink{Area\;of\;Circle\;=\;\bf{\pi r^{2}}}}}

_____________________________________________

Solution :-

Given,

» Length of side of square = 7 cm

» Diameter of circle = d = 7 cm

» Radius of circle = r = ½ × d = ½ × 7 = 3.5 cm

Let's solve this question step - by - step.

Step I ::

Here firstly we will find the area of square. We know that,

\\\;\sf{\rightarrow\;\;Area\;of\;Square\;=\;\bf{(Side)^{2}}}

By applying values, we get

\\\;\sf{\rightarrow\;\;Area\;of\;Square\;=\;\bf{(7)^{2}}}

\\\;\bf{\rightarrow\;\;Area\;of\;Square\;=\;\bf{\red{49\;\;cm^{2}}}}

Step II ::

Here we shall calculate the area of circle. We know that,

\\\;\sf{\rightarrow\;\;Area\;of\;Circle\;=\;\bf{\pi r^{2}}}

By applying values, we get

\\\;\sf{\rightarrow\;\;Area\;of\;Circle\;=\;\bf{\dfrac{22}{7}\:\times\:(3.5)^{2}}}

\\\;\sf{\rightarrow\;\;Area\;of\;Circle\;=\;\bf{\dfrac{22}{7}\:\times\:12.25}}

\\\;\sf{\rightarrow\;\;Area\;of\;Circle\;=\;\bf{22\:\times\:1.75}}

\\\;\bf{\rightarrow\;\;Area\;of\;Circle\;=\;\bf{\blue{38.5\;\;cm^{2}}}}

Step III ::

Here we shall compare the areas of both figures.

We know that,

✒ Area of Square = 49 cm²

✒ Area of Circle = 38.5 cm²

Clearly we see that,

\\\;\bf{\mapsto\;\;\red{Area\;of\;Square}\;\;>\;\;\blue{Area\;of\;Circle}}

This is because,

\\\;\bf{\mapsto\;\;\red{49\;\;cm^{2}}\;\;>\;\;\blue{38.5\;\;cm^{2}}}

➡ Area of square is greater by = 49 - 38.5

➡ Area of square is greater by = 10.5 cm²

\\\;\underline{\boxed{\tt{Figure\;\:with\;\:greater\;\;area\;=\;\bf{\purple{Square}}}}}

_____________________________________________

More to know :-

\\\;\sf{\leadsto\;\;Perimeter\;of\;Square\;=\;4\:\times\:side}

\\\;\sf{\leadsto\;\;Perimeter\;of\;Circle\;=\;2\pi r}

\\\;\sf{\leadsto\;\;Diagonal\;of\;Square\;=\;Side\sqrt{2}}

\\\;\sf{\leadsto\;\;Area\;of\;Sector\;=\;\dfrac{\pi r^{2}\theta}{360^{\circ}}}

\\\;\sf{\leadsto\;\;Length\;of\;Chord\;=\;\dfrac{2\pi\theta}{360^{\circ}}}

Similar questions