Math, asked by shifarahman2008, 5 months ago

please answer me with solution please it's a humble request​

Attachments:

Answers

Answered by IdyllicAurora
17

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept}}}

Here the concept of Area of Square has been used. Firstly we shall assume the side of initial square as a variable. Then we shall find its area. After that we shall make increase in side of the square by 50% and then find the area of square with new side. Then we shall find the percentage increase in area of final square.

Let's do it !!

________________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{Area\;of\:Square\;=\;\bf{(Side)^{2}}}}}

\\\;\boxed{\sf{\pink{\%\;increase\;in\;Area\;=\;\bf{\dfrac{Final_{(Area)}\;-\;Initial_{(Area)}}{Initial_{(Area)}}\;\times\;100\;\%}}}}

________________________________________________

Solution :-

» Increase in side = 50%

  • Let the initial side of square be x

  • Let the initial area of square be A

  • Let the final side of square be x + (50% + x)

  • Let the final area of square be A'

» Initial Area shows area with initial side.

» Final Area shows area with increased side.

________________________________________________

~ For Area of square with initial side ::

• Side of square = x

Then area of square is given as,

\\\;\sf{:\rightarrow\;\;Area\;of\:Square\;=\;\bf{(Side)^{2}}}

Now by applying values, we get

\\\;\sf{:\rightarrow\;\;Area\;of\:Square_{(Initial)}\;=\;\bf{(x)^{2}}}

\\\;\bf{:\rightarrow\;\;Area\;of\:Square_{(Initial)}\;=\;\bf{\orange{x^{2}}}}

________________________________________________

~ For Area of square with increased side ::

We know that increase in side is by 50%

So,

\\\;\tt{\rightarrow\;\;Increase\;in\;side\;=\;\bf{x\;+\;\bigg(50\%\;+\;x\bigg)}}

\\\;\tt{\rightarrow\;\;Increase\;in\;side\;=\;\bf{x\;+\;\bigg(\dfrac{50}{100}\;+\;x\bigg)}}

\\\;\tt{\rightarrow\;\;Increase\;in\;side\;=\;\bf{x\;+\;\bigg(\dfrac{1}{2}\;\+\;x\bigg)}}

\\\;\tt{\rightarrow\;\;Increase\;in\;side\;=\;\bf{x\;+\;\dfrac{x}{2}}}

\\\;\tt{\rightarrow\;\;Increase\;in\;side\;=\;\bf{\dfrac{2x\;+\;x}{2}}}

\\\;\bf{\rightarrow\;\;Increase\;in\;side\;=\;\bf{\red{\dfrac{3x}{2}}}}

Area of the square with increased side :

We know that,

\\\;\sf{:\rightarrow\;\;Area\;of\:Square\;=\;\bf{(Side)^{2}}}

Now by applying values, we get

\\\;\sf{:\rightarrow\;\;Area\;of\:Square_{(Final)}\;=\;\bf{\bigg(\dfrac{3x}{2}\bigg)^{2}}}

\\\;\bf{:\rightarrow\;\;Area\;of\:Square_{(Final)}\;=\;\bf{\blue{\dfrac{9\:x^{2}}{4}}}}

________________________________________________

~ For % increase in area of square ::

We know that,

\\\;\sf{:\Longrightarrow\;\;\%\;increase\;in\;Area\;=\;\bf{\dfrac{Final_{(Area)}\;-\;Initial_{(Area)}}{Initial_{(Area)}}\;\times\;100\;\%}}

Now by applying values, we get

\\\;\sf{:\Longrightarrow\;\;\%\;increase\;in\;Area\;=\;\bf{\dfrac{\bigg(\dfrac{9\:x^{2}}{4}\bigg)\;-\;x^{2}}{x^{2}}\;\times\;100\;\%}}

\\\;\sf{:\Longrightarrow\;\;\%\;increase\;in\;Area\;=\;\bf{\dfrac{\bigg(\dfrac{9\:x^{2}\;-\;4\:x^{2}}{4}\bigg)}{x^{2}}\;\times\;100\;\%}}

\\\;\sf{:\Longrightarrow\;\;\%\;increase\;in\;Area\;=\;\bf{\dfrac{\bigg(\dfrac{5\:x^{2}}{4}\bigg)}{x^{2}}\;\times\;100\;\%}}

\\\;\sf{:\Longrightarrow\;\;\%\;increase\;in\;Area\;=\;\bf{\dfrac{5\:x^{2}}{4\:x^{2}}\;\times\;100\;\%}}

Cancelling x², we get

\\\;\sf{:\Longrightarrow\;\;\%\;increase\;in\;Area\;=\;\bf{\dfrac{5}{4}\;\times\;100\;\%}}

\\\;\sf{:\Longrightarrow\;\;\%\;increase\;in\;Area\;=\;\bf{5\:\times\:25\;\%}}

\\\;\bf{:\Longrightarrow\;\;\%\;increase\;in\;Area\;=\;\bf{\purple{125\;\:\%}}}

\\\;\underline{\boxed{\tt{Required\;\:\%\;increase\;\:in\;\:Area\;=\;\bf{\purple{125\;\:\%}}}}}

________________________________________________

More to know :-

\\\;\sf{\leadsto\;\;Perimeter\;of\;Square\;=\;4\:\times\:Side}

\\\;\sf{\leadsto\;\;Diagonal\;of\;square\;=\;(Side)\sqrt{2}}

Properties of Square ::

  • It is a type of Parallelogram.

  • Opposite sides are equal and parallel.

  • All the angles of square are 90°

  • Diagonals of square bisect each other at 90°

  • All the sides of square are equal.

shifarahman2008: thanks you ❤❤
shifarahman2008: soo much
IdyllicAurora: Welcome mate :)
shifarahman2008: :-)
Anonymous: Great answer! can you teach me also : )
IdyllicAurora: Thanks :)
Anonymous: αwєѕσmє αѕ αlwαчѕ nσ nєєd σf ѕαчíng ít αll αnѕwєrѕ αrє ѕαtíѕfíєd !
IdyllicAurora: Thanks :)
Answered by chris206001
2

Here the concept of Area of Square has been used. Firstly we shall assume the side of initial square as a variable. Then we shall find its area. After that we shall make increase in side of the square by 50% and then find the area of square with new side. Then we shall find the percentage increase in area of final square.

★ Solution :-

★ Solution :-» Increase in side = 50%

★ Solution :-» Increase in side = 50%Let the initial side of square be x

★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be A

★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)

★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'

★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'» Initial Area shows area with initial side.

★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'» Initial Area shows area with initial side.

★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'» Initial Area shows area with initial side. • Properties of Square ::

★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'» Initial Area shows area with initial side. • Properties of Square ::It is a type of Parallelogram.

  • ★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'» Initial Area shows area with initial side. • Properties of Square ::It is a type of Parallelogram.Opposite sides are equal and parallel.
  • ★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'» Initial Area shows area with initial side. • Properties of Square ::It is a type of Parallelogram.Opposite sides are equal and parallel.All the angles of square are 90°
  • ★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'» Initial Area shows area with initial side. • Properties of Square ::It is a type of Parallelogram.Opposite sides are equal and parallel.All the angles of square are 90°Diagonals of square bisect each other at 90°
  • ★ Solution :-» Increase in side = 50%Let the initial side of square be xLet the initial area of square be ALet the final side of square be x + (50% + x)Let the final area of square be A'» Initial Area shows area with initial side. • Properties of Square ::It is a type of Parallelogram.Opposite sides are equal and parallel.All the angles of square are 90°Diagonals of square bisect each other at 90°All the sides of square are equal.

Similar questions