Math, asked by Rajshree525, 6 months ago

please answer my question ​

Attachments:

Answers

Answered by saounksh
1

ᴀɴsᴡᴇʀ

  •  \boxed{ \bf{arc(ADB) = \frac{4\pi R}{3}} }

ɢɪᴠᴇɴ

  • A circle with secant AB and tangent EBC.
  • Angle  ∠ABC = 120º

ᴛᴏ ғɪɴᴅ

  • Length of arc(ADB)

ᴄᴏɴsᴛʀᴜᴄᴛɪᴏɴ

  • Draw line segments MA and MB.

xʟɪɴɪɴ

Let 'R' be the raduis of the circle.

We have,

 \to MB ⊥ EC

 \to ∠MBC = 90º ...(1)

Also,

 \to MB = MA

 \to ΔMAB is isosceles

 \to ∠MBA = ∠MAB... (2)

It is given that

 \to ∠ABC = 120º

 \to ∠MBC + ∠MBA = 120º

 \to 90^o + ∠MBA = 120º [Using (1)]

 \to \bf{∠MBA = 30^o}

 \to \bf{∠MAB = 30^o} [Using (2)]

In ΔMAB,

 \to ∠MBA + ∠MAB +∠AMB = 180^o

 \to 30^o + 30^o + ∠AMB = 180^o

 \to ∠AMB = 180^o - 60^o

 \to ∠AMB = 120^o

 \to ∠AMB = 120\times \frac{\pi}{180}\:rad

 \to ∠AMB = 120\times \frac{\pi}{180}\:rad

 \to \bf{∠AMB = \frac{2\pi}{3}\:rad}

Length of an arc is given by

 \to l = R\theta, \theta in radian.

 \to arc(AFB) = R \frac{2\pi}{3}

 \to Circumference - arc(ADB) = \frac{2\pi R}{3}

 \to 2\pi R - arc(ADB) = \frac{2\pi R}{3}

 \to arc(ADB) = 2\pi R - \frac{2\pi R}{3}

 \to arc(ADB) = \frac{(6-2)\pi R}{3}

 \to \bf{arc(ADB) = \frac{4\pi R}{3}}

Similar questions