please answer my question...
Answers
Answer:
but the ki Bhagalpur Bhandara Bharatpur Bharuch Gujarat India society of
Answer:
⟹2I=2∫
⟹2I=2∫ 0
⟹2I=2∫ 02
⟹2I=2∫ 02
⟹2I=2∫ 02
⟹2I=2∫ 02 4−x
⟹2I=2∫ 02 4−x 2
⟹2I=2∫ 02 4−x 2
⟹2I=2∫ 02 4−x 2
⟹2I=2∫ 02 4−x 2 .dx
⟹2I=2∫ 02 4−x 2 .dx
⟹2I=2∫ 02 4−x 2 .dx
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered}
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 0
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2 .dx
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2 .dx
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2 .dx
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2 .dx • Now put x = 2 sin(θ)\sin( \theta)sin(θ) –
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2 .dx • Now put x = 2 sin(θ)\sin( \theta)sin(θ) –
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2 .dx • Now put x = 2 sin(θ)\sin( \theta)sin(θ) –
⟹2I=2∫ 02 4−x 2 .dx ⟹I=∫024−x2.dx\begin{lgathered}\\ \implies \: \: { \bold{I= \int^2 _{0} \sqrt{4 - {x}^{2} } .dx}}\\\end{lgathered} ⟹I=∫ 02 4−x 2 .dx • Now put x = 2 sin(θ)\sin( \theta)sin(θ) –