Math, asked by Mahaprasasad, 6 months ago

please answer my question ​

Attachments:

Answers

Answered by ahervandan39
5

Answer:

given \:  =  \sec(x)  +  \tan(x)  = a \\ then \:  {a}^{2}  =  {( \sec \: x +  \tan \: x) }^{2}  \\  {a}^{2}  =  { \sec }^{2} x +  { \tan}^{2} x + 2 \sec \: x  \:  \tan \: x......(1) \\  {a}^{2}   = 2 { \sec }^{2} x - 1 + 2 \sec \: x  \:  \tan \: x \\  {a}^{2}  + 1 = 2 \sec \: x( \sec \: x +  \tan \: x) .......(2) \\  Consider \:  equation  \: (1) \\  {a}^{2}  = 2  { \tan }^{2} x \:  + 1 + 2  \sec \: x \tan \: x \\  {a}^{2}  = 2 \tan \: x( \sec \: x \:  + tan \: x)......(3) \\  Divide \:  (2)  \: and \: (3) \\   \frac{ {a }^{2} - 1 }{ {a}^{2}  + 1 }  =  \frac{2tan \: x( \sec \: x + tan \: x) }{2sec \: x(sec \: x + tan \: x)}  = sin \: x</p><p></p><p>

Answered by itzHitman
1

Step-by-step explanation:

Hi bro I boxed you see in your inbox list

Similar questions