Math, asked by nigamsingh635, 3 months ago

please answer my question

Attachments:

Answers

Answered by 12thpáìn
71

\text{\bf{\green{watch  and learn How to Solve. }}}\\\\

Question

 \sf \:  \left( \dfrac{1}{1 +  {a}^{n - m} }+  \dfrac{1}{1 +  {a}^{m - n} }    \right) \:  \: is  \: \: equal  \: \: to

Solution

{ \:  \:  \:  \:  \:  \:  :   \:  \implies\sf \:   \dfrac{1}{1 +  {a}^{n - m} }+  \dfrac{1}{1 +  {a}^{m - n} }}

  •  \small\boxed{ \:  \:  \:  \:  \:  \:  \:  \: \bf{ a^{x-y}=\frac{a^x}{a^y}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

{ \:  \:  \:  \:  \:  \:  :   \:  \implies\sf \:   \dfrac{1}{1 +   \frac{ {a}^{n} }{ {a}^{m} }  }+  \dfrac{1}{1 +   \frac{ {a}^{m} }{ {a}^{n} }  }}

  • Taking LCM

{ \:  \:  \:  \:  \:  \:  :   \:  \implies\sf \:   \dfrac{1}{  \frac{  {a}^{m }  + {a}^{n} }{ {a}^{m} }  }+  \dfrac{1}{  \frac{  {a}^{n} +  {a}^{m} }{ {a}^{n} }  }}

{ \:  \:  \:  \:  \:  \:  :   \:  \implies\sf \:    \dfrac{ {a}^{m} }{ {a}^{m}  +  {a}^{n} } +     \dfrac{ {a}^{n} }{ {a}^{n} +  {m}^{m}  } }

  • Taking LCM of a^m + a^n

{ \:  \:  \:  \:  \:  \:  :   \:  \implies\sf \:    \dfrac{ {a}^{m} +  {a}^{n}  }{ {a}^{m}  +  {a}^{n} } }

{ \:  \:  \:  \:  \:  \:  :   \:  \implies\sf \:   \cancel  \dfrac{ {a}^{m} +  {a}^{n}  }{ {a}^{m}  +  {a}^{n} } }

{ \:  \:  \:  \:  \:  \:  :   \:  \implies\sf \:   1 }    \\\\

\gray{ \sf \:  \left( \dfrac{1}{1 +  {a}^{n - m} }+  \dfrac{1}{1 +  {a}^{m - n} }    \right) \:   \: =  \:  \huge \bf1}\\\\\\

  • \begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \bigstar \: \underline{\bf{}}\\ {\boxed{\begin{array}{c | c}  \frac{ \:  ~~~~~~~~~~\:  \:  \:  \:  \:\sf  Laws \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ } &\frac{ \: ~~~~~~~~~~ \:  \:  \:  \:  \:\sf Example  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }{ }\\ \sf \bigstar{a}^{m} \times {a}^{n} = {a}^{m + n} & \sf {a}^{2}  \times  {a}^{3} =  {a}^{2 + 3} =  {a}^{6}    \\ \\  \sf \bigstar{a}^{m} \div {a}^{n} = {a}^{m - n}& \sf {a}^{3} \div  {a}^{2}  =  {a}^{3 - 2} =  {a}^{1}     \\ \\ \sf{\bigstar \:  \:  \:  \:  \:  \: ( {a}^{m} ) ^{n} = {a}^{mn} } & \sf( {a}^{2} ) ^{3} = {a}^{2 \times 3} =  {a}^{6}  \\  \\  {\bigstar\sf a {}^{m} \times {n}^{m} = (ab) ^{m} } &\sf a {}^{2} \times {b}^{2} = (ab) ^{2}\\  \\  \sf\bigstar  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \:  \:  \: {a}^{0} = 1& \sf {2}^{0} = 1 \:  \:  \:  \:    \\  \\  \sf \bigstar  \:  \:  \: \: {\dfrac{ {a}^{m} }{ {b}^{m} }= \left( \dfrac{a}{b} \right) ^{m} }&  \sf{\dfrac{ {a}^{2} }{ {b}^{2} }=  \left( \dfrac{a}{b} \right) ^{2} }\\\\~~~~~~~~\bigstar\sf x^{\frac{m}{n} }=\sqrt[n]{x^m}\sf   = (\sqrt[n]{x})^m  & \sf x^{\frac{2}{3} }=\sqrt[3]{x^2} = (\sqrt[n]{x})^m\\   \\\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}
Similar questions