Math, asked by jannu235, 1 month ago

Please answer my question

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \limits^{e}_{1} \bigg( \sqrt{x}  +  \frac{1}{ \sqrt{x} }  \bigg)^{2}dx   \\

 =  \int \limits^{e}_{1} x  \: dx+\int \limits^{e}_{1}  \frac{1}{ x } \: dx + 2 \int \limits^{e}_{1} \: dx   \\

 =   \bigg [ \frac{ {x}^{2} }{2}  \bigg ] ^{e}_{1}  \:+ \bigg [ \ln(x )\bigg ] ^{e}_{1}    + 2  \bigg [x  \bigg ]   ^{e}_{1}    \\

 =   \frac{ {e}^{2} }{2}   -  \frac{1}{2}  + \ln(e) -  \ln(1)    + 2 (e - 1)     \\

 =   \frac{ {e}^{2} }{2}   -  \frac{1}{2}  + 1     + 2 e -  2    \\

 =   \frac{ {e}^{2} }{2}  + 2e  -  \frac{3}{2}    \\

Answered by sneham211117
2

Answer:

Hope this helps you

Keep learning

Attachments:
Similar questions