please answer my question
Attachments:
Answers
Answered by
8
I am taking theta as x becaus there is no theta symbol in my phone.
(sinx-2sin³x)/(2cos³x-cosx)
=(sinx(1-2sin²x))/(cosx(2cos²x-1))
=(sinxcos2x)/(cosxcos2x)
=sinx/cosx
=tanx
Thus LHS=RHS proved
yadavyash13:
thanks bro
Answered by
5
sin theta - 2sin³ theta / 2cos³ theta - cos theta = tan theta
Now, take L.H.S
= sin theta - 2sin³ theta
__________________
2 cos³ theta - cos theta
= sin theta (1 - 2sin² theta)
_____________________
cos theta (2cos² theta - 1)
= sin theta [1 - 2(1 - cos² theta)]
________________________
cos theta (2cos² theta - 1)
As, sin²theta = 1 - cos²theta
= sin theta ( 2cos² theta - 1)
______________________
cos theta (2cos² theta -1)
(2cos² theta - 1) / (2cos² theta - 1)
Cancel out by dividing and 1 came.
So,
= sin theta / cos theta = tan theta
L.H.S = R.H.S
Hence, proved
__________________________________
Similar questions