Math, asked by khushee66, 1 year ago

PLEASE answer my question fast



Attachments:

siddhartharao77: Which one? 13 (or) 14 (or) both?
khushee66: both
rozi67: yes

Answers

Answered by siddhartharao77
7

Step-by-step explanation:

(13)

Given:7^{log\;x} =98 - x^{log\;7}

\Longrightarrow 7^{log\;x} +x^{log\;7} = 98

\Longrightarrow 2 * 7^{log\;x} = 98

\Longrightarrow 7^{log\;x} = 49

\Longrightarrow 7^{log\;x} = 7^2

\Longrightarrow log\;x = 2

\Longrightarrow log\;x = log\; 100

\Longrightarrow \boxed{x = 100}

(14)

Given:\sqrt{1+log_{0.04}x}+\sqrt{3+log_{0.2}x} = 1

\Longrightarrow \sqrt{1+\frac{log_{0.2}(x)}{log_{0.2}(0.04)}} + \sqrt{3+log_{0.2}(x)} = 1

\Longrightarrow \sqrt{\frac{2+log_{0.2}(x)}{2}}+\sqrt{3+log_{0.2}(x)} =1

Let\;log_{0.02}(x) = u

\Longrightarrow \sqrt{\frac{2+u}{2}} + \sqrt{3+u}=1

\Longrightarrow \sqrt{\frac{2+u}{2}} = (1-\sqrt{3+u})

On Squaring both sides, we get

\Longrightarrow \frac{2+u}{2} = u + 4 - 2\sqrt{3+u}

\Longrightarrow \frac{2+u}{2}-u-4 = -2\sqrt{3+u}

\Longrightarrow (\frac{2+u}{2}-u-4)^2 = (-2\sqrt{3+u})^2

\Longrightarrow \frac{u^2}{4}+3u+9=12+4u

\Longrightarrow u^2 - 4u - 12 = 0

\Longrightarrow u^2 -6u + 2u - 12 = 0

\Longrightarrow u(u-6)+2(u-6)=0

\Longrightarrow (u+2)(u-6)=0

\Longrightarrow u = -2,6[Not \;satisfies]

\Longrightarrow u = -2

\Longrightarrow log_{0.2}(x) = -2

\Longrightarrow log_{0.2}(x) = log_{0.2}(\frac{1}{0.04})

\Longrightarrow x = \frac{1}{0.04}

\Longrightarrow \boxed{x = 25}

Hope it helps!


duragpalsingh: Well explained bro!
siddhartharao77: Thanks bro
Similar questions