Math, asked by cuteipie82, 1 year ago

PLEASE ANSWER MY QUESTION GUYS

Attachments:

Answers

Answered by siddhartharao77
9

Given :\frac{tanA + secA - 1}{tanA - secA + 1}

We know that tan^2A + 1 = sec^2A (or) tan^2A - sec^2A = -1

=>\frac{tanA + secA + (tan^2A - sec^2A)}{tanA - secA + 1}

We know that a^2 - b^2 = (a + b)(a - b)

=>\frac{tanA + secA + (tanA - secA)(tanA + secA)}{tanA - secA + 1}

Take tanA + secA as common, we get

=> \frac{tanA + secA(tanA - secA + 1)}{tanA - secA + 1}

=> tanA + secA

=>\frac{sinA}{cosA}+\frac{1}{cosA}

=>\boxed{\frac{1 + sinA}{cosA}}



Hope it helps!


siddhartharao77: :-)
cuteipie82: thanx for helping me
siddhartharao77: welcome
BIGBANG1234: Sir I have a doubt. can you clarify it
siddhartharao77: come to inbox
Answered by Anonymous
2

Here is your answer:

_____________________________________________

Given:

LHS

\frac{tanA+secA-1}{tanA-secA+1}

We know that : sec^2A - tan^2A = 1

\implies \frac{tanA + secA - (sec^2A-tan^2A)}{tanA-secA+1}

\implies \frac{tanA + secA +tan^2A-sec^2A)}{tanA-secA+1}

We know that a^2 - b^2 = (a+b)(a-b)

\implies \frac{tanA+secA +(tanA+secA)(tanA-secA)}{tanA-secA+1}

Take tanA+ sec A as common:

\implies \frac{(tanA + secA )( 1 + tan A - sec A)}{tanA - secA + 1}

Cancel the term tan A - secA + 1

\implies tanA + sec A

tan A = \frac{sinA}{cosA}

secA = \frac{1}{cosA}

\implies \frac{sinA}{cosA} + \frac{1}{cosA}


\implies \frac{ 1 + sinA}{cosA} ===> RHS

Thus LHS=RHS

Hence proved.

Hope it helps

______________________________________________________________________________

Similar questions