Math, asked by komalsingrajput, 1 year ago

please answer my question number 28 its urgent please fast guys??

Attachments:

Answers

Answered by siddhartharao77
4

(i)

Given: cosecθ - sinθ = a³

⇒ (1/sinθ) - sinθ = a³

⇒ (1 - sin²θ)/sinθ = a³

⇒ cos²θ/sinθ = a³.


(ii)

Given: secθ - cosθ = b³

⇒ (1/cosθ) - cosθ = b³

⇒ (1 - cos²θ)/cosθ = b³

⇒ sin²θ/cosθ = b³.


LHS:

a²b²(a² + b²)

= a⁴b² + a²b⁴

= {[cos²θ/sinθ]^4/3 * [sin²θ/cosθ]^4/3} + {[cos²θ/sinθ]^2/3 * [sin²θ/cosθ]^4/3

= {[(cosθ)^(8/3)/(cosθ)^(2/3)}] + {[(sinθ)^(8/3)/(sinθ)^2/3}]

= [cosθ]^(8/3 - 2/3) + [sinθ]^(8/3 - 2/3)

= [cosθ]² + [sinθ]²

= 1

= RHS


Hope it helps you!

Answered by Siddharta7
2

Step-by-step explanation:

Consider cosec theta - sin theta = a³

⇒ !/sin theta - sin theta = a³

⇒ 1 - sin² theta/sin theta = a³

cos² theta/ sin theta = a³ → (1)

⇒ (cos² theta/sin theta)²/³ = (a³)²/³

⇒ cos⁴/³ theta/sin²/³ theta = a² → (2)

Now consider, sec theta - cos theta = b³

⇒ 1/cos theta - cos theta = b³

⇒ 1 - cos²theta/cos theta = b³

⇒ sin² theta/cos theta = b³ → (3)

⇒ (sin² theta/cos theta)²/³ = (b³)²/³

⇒ sin⁴/³ theta/cos²/³ theta = b² → (4)

Multiply (2) and (4), we get

(cos⁴/³ theta/sin²/³ theta)× (sin⁴/³ theta/cos²/³ theta) = a²b² → (5)

a² + b² =(cos⁴/³ theta/sin²/³ theta) + (sin⁴/³ theta/cos²/³ theta)

(cos² theta + sin² theta)/(sin²/³ theta cos²/³ theta)

= 1/sin²/³ theta cos²/³ theta

Consider, a²b²(a²+b²) = (sin²/³ theta cos²/³ theta) × 1/sin²/³ theta cos²/³ theta

= 1

Similar questions