Math, asked by Mayankrajpoot, 1 year ago

Please answer my question please please
If X+y+z=7 and xy+yz+zx=6 find x^2+y^2+z^2


Anonymous: Mark my Ans as brainlist if it helps you

Answers

Answered by Anonymous
6

Given \:  \: Question \:  \: Is \:  \\  \\ x + y + z = 7 \:  \:  \:  \:  \: xy + yz + zx = 6 \\  \\ find \:  \:  \: x {}^{2}  + y { }^{2}  + z {}^{2}  \\  \\ Answer \:  \\  \\ x + y + z = 7 \\  \\ Squaring \:  \: on \: both \: sides \: we \: have \\  \\ (x + y + z) {}^{2}  = 7 {}^{2}  \\  \\ x {}^{2}  + y {}^{2}  + z {}^{2}  + 2xy + 2yz + 2zx = 49 \\  \\ x {}^{2}  + y {}^{2}  + z {}^{2}  + 2(xy + yz + zx) = 49 \\  \\ x {}^{2}  + y {}^{2}  + z {}^{2}  + 2(6) = 49 \\  \\ x {}^{2}  + y {}^{2}  + z {}^{2}  + 12 = 49 \\  \\ x {}^{2}  + y {}^{2}  + z {}^{2}  = 49 - 12 \\  \\ x {}^{2}  + y {}^{2}  + z {}^{2}  = 37 \\  \\ Therefore \: \:  \:  \: x {}^{2}  + y {}^{2}  + z {}^{2}  = 37 \\  \\ Note \\  \\  \: (a + b +  + c) {}^{2}  = a {}^{2}  + b {}^{2}  + c {}^{2}  + 2ab + 2bc + 2ac

Answered by rehanjalees
1

Answer:

Step-by-step explanation:

x+y+z =7

x+yz+zx=6

Now,

(x+y+z)^2 = x^2+y^2+z^2 +2xy+2yz+2zx

since x+y+x =7

Hence

(7)^2 =x^2+y^2+z^2 + 2(xy+yz+zx)

49 = x^2+y^2+z^2 + 2 × 6

Or x^2+y^2+z^2 =49 - 12 =37

Hope it is clear. Pls mark as brainliest

Similar questions