Math, asked by Mayankrajpoot, 1 year ago

Please answer my question please please please
If X+ one upon x=√7 find value of x^2+1/x^2 and x^4+1/x^4

Answers

Answered by Anonymous
18

x + \dfrac{1}{x} = √7

__________ [GIVEN]

x² + \dfrac{1}{ {x}^{2} }

and

x⁴ + \dfrac{1}{ {x}^{4} }

__________ [TO FIND]

=> x + \dfrac{1}{x} = √7

• Squaring on both sides.

=> ( {x \:  +  \:  \dfrac{1}{x}) }^{2} = (√7)²

=> x² + \dfrac{1}{ {x}^{2} } + 2 (\dfrac{x}{x}) = 7

=> x² + \dfrac{1}{ {x}^{2} } + 2 = 7

=> x² + \dfrac{1}{ {x}^{2} } = 7 - 2

______________________________

x² + \dfrac{1}{ {x}^{2} } = 5

____________ [ANSWER]

=> x² + \dfrac{1}{ {x}^{2} } = 5

• Squaring on both sides.

=> ( { {x}^{2}  \:  +  \:  \dfrac{1}{ {x}^{2} } ) }^{2} = (5)²

=> x⁴ + \dfrac{1}{ {x}^{4} } + 2(\dfrac{ {x}^{2} }{ {x}^{2} }) (x² + \dfrac{1}{ {x}^{2} }) = 25

=> x⁴ + \dfrac{1}{ {x}^{4} } + 2(5) = 25

=> x⁴ + \dfrac{1}{ {x}^{4} } = 25 - 10

______________________________

x⁴ + \dfrac{1}{ {x}^{4} } = 15

_______________ [ANSWER]

Similar questions