Math, asked by kunal785, 1 year ago

please answer my questions ​

Attachments:

Answers

Answered by Anonymous
7

Hii its tom85

using paythagoras theorem

k= H= sqrt (169 -25)= sqrt144=12

tan p - cot R

perpendicular/base (of angle p)- base/ perpendicular(of angle R)

5/ 12- 5/12

0

___________/\__________☺️

hope it may helps you dude

Answered by Anonymous
10

\mathfrak{\underline{\underline{\green{Answer:-}}}}

\mathsf{tanP-cotR = 0}

\mathfrak{\underline{\underline{\green{Explanation:-}}}}

Given:

Right angled Triangle [Refer the atachment]

In which,

PQ = 12cm

QR = 5cm

PR = 13cm

\\

To Find:

Value of tanP - cotR

\\

Solution:

Let us find the values of tanP and cotR

\\

Value of tanP

As we know

\boxed{\pink{ tan \theta = \dfrac{opposite \: side}{Adjacent \: side}}}

Therefore

\mathsf{ tanP = \dfrac{QR}{PQ}}

\mathsf{ tanP = \dfrac{5}{12}}

\\

Value of cotR

As we know

\boxed{\pink{ cot \theta = \dfrac{Adjacent \: side}{Opposite \: side}}}

Therefore

\mathsf{ cotR = \dfrac{QR}{PQ}}

\mathsf{ cotR = \dfrac{5}{12}}

\\

Value of tanP -cotR

\mathsf{ tanP-cotR = \dfrac{5}{12} - \dfrac{5}{12}}

\mathsf{ tanP-cotR = \cancel{\dfrac{5}{12}}- \cancel{\dfrac{5}{12}}}

\mathsf{ tanP-cotR = 0 }

\\

Hence,

\mathsf{ tanP-cotR = 0 }

Attachments:

kunal785: 100000x times thank you Arvind
Anonymous: @1000000000x @times WC @Bhai
Anonymous: xD
Anonymous: great dude
Anonymous: Thanks bro :)
Anonymous: most welcome
Similar questions