Physics, asked by DashingDj, 9 months ago

please answer my questions​

Attachments:

Answers

Answered by Draxillus
7

Question :- Find the Current in each branch of the circuit .That is  I_{AB}\:,I_{BED},\:I_{AD},\:I_{BC}\:,I_{CA}\:,I_{CD}

Solution :-

Given

A complex electric circuit consisting of resistances and cells in different branches.

To Find

Current in each branches  I_{AB}\:,I_{BED},\:I_{AD},\:I_{BC}\:,I_{CA}\:,I_{CD}

Concept

  • This question can be solved using Kirchoff's voltage law (KVL) which states that voltage drop in a closed loop is zero.

  • V = IR.

  • The voltage decreases in the direction of current.

Solution

Apply KVL in branch ABCA

 V_{A}\:-10\:+I_1\:+2(I_2\:+\:I_3}\:+4I_2\:V_{A}

=>  I_1\:+2I_2\:+2I_3\:+4I_2\:=\:10

=>  I_1\:+6I_2\:+2I_3\:=\:10 ........(I)

Apply KVL in BDEB

 V_B\:-2(I_2\:+\:I_3)\:-\:2(I_2\:+\:I_3\:-I_1)\:+5\:=V_B

=>  -2I_2\:-\:2I_3-2I_2\:-\:2I_3\:+\:2I_2\:=\:-5

=>  2I_2\:+\:4I_3=\:5 ......(2)

Apply KVL in ABDA

 V_A\:-\:4I_2\:-\:2(I_2\:+\:I_3)\:-\:2(I_2\:+\:I_3\:-I_1)\:+\:4(I_1\:-\:I_2)\:=\:V_A

=>  -12I_2\:-\:4I_3\:+\:6I_1\:=\:0

=>  6I_1\:=\:12I_2\:+\:4I_3

=>  I_1\:=\:\dfrac{6I_2\:+\:2I_3}{3}

Putting this value of  I_1 in eqn(1),we get

 \dfrac{6I_2\:+\:2I_3}{3}\:+6I_2\:+\:2I_3\:=\:10

=>  \dfrac{6I_2\:+\:2I_3\:+\:18I_2\:+\:6I_3}{3}\:=\:10

=>  6I_2\:+\:2I_3\:+\:18I_2\:+\:6I_3\:=\:30

=>  12I_2\:+\:4I_3\:=\:15 .....(3)

Subtracting eqn(2) from (3) ,we get

=>  I_2\:=\:1

Putting values of  I_2  in equation(3)

 4I_3\:+\:12(1)\:=\:15

=>  I_3\:=0.75

Putting these values in eqn(1)

=>  I_1\:+6(1)\:+2(0.75)\:=\:10

=>  I_1\:=\:2.5

Thus,  I_1\:=\:2.5,\: I_2\:=\:1,\:I_3\:=0.75

Current in various circuits :-

 I_{AB}\:=\:I_2\:=\:1 A

 I_{DEB}\:=\:I_3\:=\:0.75 A

 I_{AD}\:=\:I_1\:-\:I_2\:=1.5 A

 I_{BC}\:=\:I_3\:+\:I_2\:=\:1.75 A

 I_{CA}\:=\:I_1\:=\:2.5 A

 I_{CD}\:=\:I_2\:+I_3\:-\:1\:=\:-0.75  A

Similar questions