please answer my questions
Attachments:
Answers
Answered by
2
__________________________________
__________________________________
On line EF
=> <EBD + <DBF = 180° ( linear pair )
=> <EBD + <DBC + <CBF = 180° ( <DBF = <DBC + <CBF )
=> x + 3° + x + 20° + x + 7° = 180°
=> 3x + 30° = 180°
=> 3x = 180° - 30°
=> 3x = 150°
=> x = 150° / 3
=> x = 50°
So x = 50°
and all angles of figure are
(I) x + 3° = 50° + 3° = 53°
(ii) x + 20° = 50° + 20° = 70°
(iii) x + 7° = 50° + 7° = 57°
__________________________________
__________________________________
Hope this helps you
### BE BRAINLY ###
BhawnaAggarwalBT:
hey
Answered by
3
Hi ,
From. the figure ,
<EBD + <DBC + <CBF = 180°
[ Straight angle ]
( x + 3 )° + ( x + 20 )°+ ( x + 7 )° = 180°
x + 3 + x + 20 + x + 7 = 180°
3x + 30° = 180°
3x = 180° - 30°
3x = 150°
x = 150/3
x = 50
Therefore ,
<EBD = ( x + 3 )° = ( 50 + 3 )° = 53°
<DBC = ( x + 20 )° = ( 50 + 20 )° = 70°
<CBF = ( x + 7 )° = ( 50 + 7 )° = 57°
I hope this helps you.
: )
From. the figure ,
<EBD + <DBC + <CBF = 180°
[ Straight angle ]
( x + 3 )° + ( x + 20 )°+ ( x + 7 )° = 180°
x + 3 + x + 20 + x + 7 = 180°
3x + 30° = 180°
3x = 180° - 30°
3x = 150°
x = 150/3
x = 50
Therefore ,
<EBD = ( x + 3 )° = ( 50 + 3 )° = 53°
<DBC = ( x + 20 )° = ( 50 + 20 )° = 70°
<CBF = ( x + 7 )° = ( 50 + 7 )° = 57°
I hope this helps you.
: )
Similar questions