Math, asked by Namya1209, 1 year ago

Please answer my questions no.11 and 15(3)..

Attachments:

Answers

Answered by anu24239
1

ANSWER....

 \frac{1}{ \sqrt{ |x|  - x} }  \\  \\ we \: know \: that \: square \: root \: can \\ never \: give \: a \: negative \: number... \\  \\ so \:  \sqrt{ |x|  - x}  > 0 \\  \\ please \: note \: that \: in \: this \: case \:  \\ square \: root \: is \: not \: equal \: to \: zero  \\ \: because \: this \: give \: a \: indeterminant \\  \\  \sqrt{ |x| - x }   > 0 \\ squaring \: both \: side \\  \\  |x|  - x > 0 \\  \\ case \: 1 \\  \\ when \: x \: is \: positive \: number \\  \\  |x|  - x > 0 \\  \\ x - x > 0 \\  \\ 0 > 0 \: (noth \: possible) \\ ( |x|  = x \: if \: x \: is \:  a \: positive \: number) \\  \\ case \: two \: when \: x \: is \: a \: negative \\ number \\  \\  |x|  - x > 0 \\  \\  - x - x > 0 \\  \\  - 2x > 0 \\  \\ x  < 0....all \: negative \: number \\  \\  |x|  =  - x \: if \: x \: is \: a \: negative \: number \\  \\ domain = all \: negative \: number \\  \\  \frac{1}{ \sqrt{ |x|  - x} }  \: as \: we \: know \: this \: can \: never \: be \: a  \\ \\  \: negative \: number \: so \: range \: is \:  \\ all \: positive

NEXT PART....

5 -  |x + 1|  \\  \\ as \: you \: see \: in \: the \: given \: question \: \\  there \: is \: no \: square \: root \:  no \: denominetor \\ so \: we \: can \: put \: any \: no. \: in \: the \: place \: of \: x \\  \\ so \: domain \: is \: all \: real \: number \\  \\ range \: is \: all \: real \: number

#BTSKINGDOM

Similar questions