Please answer needed urgently...will mark brainliest..
Answers
[tex]\mathfrak{\huge{Answer:-}} \\ x = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } = \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} - \sqrt{3} } \times \frac{ \sqrt{5} + \sqrt{3} }{ \sqrt{5} + \sqrt{3} } = \frac{( \sqrt{5} + \sqrt{3})( \sqrt{5} + \sqrt{3} ) }{( \sqrt{5} - \sqrt{3} )( \sqrt{5} + \sqrt{3}) } = \frac{ {( \sqrt{5} + \sqrt{3}) }^{2} }{ {( \sqrt{5}) }^{2} - {( \sqrt{3}) }^{2} } = \frac{5 + 3 + 2 \sqrt{15} }{5 - 3} = \frac{8 + 2 \sqrt{15} }{2} = \frac{2(4 + \sqrt{15} )}{2} = 4 + \sqrt{15} \\ y = \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } = \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} + \sqrt{3} } \times \frac{ \sqrt{5} - \sqrt{3} }{ \sqrt{5} - \sqrt{3} } = \frac{( \sqrt{5} - \sqrt{3})( \sqrt{5} - \sqrt{3} ) }{( \sqrt{5} + \sqrt{3} )( \sqrt{5} - \sqrt{3} ) } = \frac{ {( \sqrt{5} - \sqrt{3}) }^{2} }{ {( \sqrt{5} )}^{2} - {( \sqrt{3} )}^{2} } = \frac{5 + 3 - 2 \sqrt{15} }{5 - 3} = \frac{8 - 2 \sqrt{15} }{2} = \frac{2(4 - \sqrt{15} )}{2} = 4 - \sqrt{15} \\ x + y + xy \\ = (4 + \sqrt{15} ) + (4 - \sqrt{15} ) + (4 + \sqrt{15} )(4 - \sqrt{15} ) \\ = 4 + \sqrt{15} + 4 - \sqrt{15} + {(4)}^{2} - {( \sqrt{15} )}^{2} \\ = 4 + \sqrt{15} + 4 - \sqrt{15} + 16 - 15 \\ = 4 + 4 + 16 - 15 + \sqrt{15} - \sqrt{15} \\ = 8 + 1 \\ = 9 \\ \boxed{\boxed{\large{\bold{x + y + xy = 9}}}}[/tex]