Math, asked by ClassicEddie, 6 hours ago

Please answer no. 2 and 3.

Attachments:

Answers

Answered by suhail2070
0

Step-by-step explanation:

question \:  \:  \: no \:  \:  \:  \: 2) \\  \\ 3 +  log_{10}(x)  = 2 log_{10}(y)  \\ 3 =  log_{10}( {y}^{2} )  -  log_{10}(x)  \\  \\ 3 =  log_{10}( \frac{ {y}^{2} }{x} )  \\  \\  \frac{ {y}^{2} }{x}  =  {10}^{3}  \\  \\  {y}^{2}  = 1000x \\  \\ then \:  \: x =  \frac{ {y}^{2} }{1000} .

question \: no \:  \:  \: 3(i) \\  \\  \\  \\  log_{2}( log_{2}( log_{3}( log_{3 {}^{} }( {27}^{3} ) ) ) ) =  log_{2}( log_{2}( log_{3}( log_{3}( log_{3}( {3}^{9} ) ) ) ) )   \\  \\  =  log_{2}( log_{2}( log_{3}( 9log_{3}(3) ) ) )  \\  \\  =  log_{2}( log_{2}( log_{3}(9) ) )  \\  \\  =  log_{2}( log_{2}(2) )  \\  \\  =  log_{2}(1)  \\  \\  = 0. \\  \\  \\  \\  \\ question \: no \: 3 \:  \:( ii) \\  \\  \\  \\  \\  \\  log_{3}(4)  \times  log_{4}(5)  \times  log_{5}(6)  \times  log_{6}(7)  \times  log_{7}(8)  \\  \\  =  \frac{ log(4) }{ log(3) }  \times  \frac{ log(5) }{ log(4) }  \times  \frac{ log(6) }{ log(5) }  \times  \frac{ log(7) }{ log(6) }  \times  \frac{ log(8) }{ log(7) }  \\  \\  =  \frac{ log(8) }{ log(3) }  \\   \\  =  \frac{3 log(2) }{ log(3) }  \\  \\  = 3 log_{3}(2)

Similar questions