Physics, asked by riya15042006, 1 month ago

please answer
No spamming !!!otherwise reported​

Attachments:

Answers

Answered by Anonymous
41

Given :

  • \vec{A} = -2\hat{\imath} + 3\hat{\jmath}+\hat{k}

  • \vec{B} = \hat{\imath} + 2\hat{\jmath}-4\hat{k}

To find :

  • Unit vector in the direction of resultant vector of vectors  \vec{A} and  \vec{B}

Solution :

Resultant vector is the sum of given vectors

 \vec{R} = \vec{A}+\vec{B}

{ \vec{R} = (-2\hat{\imath} + 3\hat{\jmath}+\hat{k} )+(\hat{\imath} + 2\hat{\jmath}-4\hat{k})}

{ \vec{R} = -2\hat{\imath} + 3\hat{\jmath}+\hat{k} +\hat{\imath} + 2\hat{\jmath}-4\hat{k}}

{ \vec{R} = -\hat{\imath}  +  5\hat{\jmath}-3\hat{k}}

Now, magnitude of this vector is given by,

{  | \vec{R} |  = \sqrt{ {x}^{2} +  {y}^{2}  +  {z}^{2}  } }

{  | \vec{R} |  = \sqrt{ { 1}^{2} +  {5}^{2}  +  {3}^{2}  } }

{  | \vec{R} |  = \sqrt{ { 1}+  25  +  9  } }

{  | \vec{R} |  = \sqrt{ 35 } }

Required unit vector is given by,

 \rm Unit\: Vector= \dfrac{\vec{R}}{|\vec{R}|}

 \rm Unit\: Vector= \dfrac{-\hat{\imath}  +  5\hat{\jmath}-3\hat{k}}{ \sqrt{35} }

Hence option (C) is correct

Similar questions