Math, asked by Mudra44, 11 months ago

please answer now help me
answer is -1 but U don't know how to do???☹️​

Attachments:

Answers

Answered by Anonymous
9

{\mathfrak{\underline{\underline{\blue{Answer :-}}}}}

x = -1

{\mathfrak{\underline{\underline{\red{Step-By-Step-Explanation:-}}}}}

To Find :-

 \bf{\frac{2x + 3}{3x + 4}  =  \frac{2x - 3}{3x - 2}}

➭ Let this be equation 1

Solution :-

By cross multiplication method

 \sf{ 3x - 2(2x + 3) = 3x + 4(2x - 3)}

 \sf{6 {x}^{2}  + 9x - 4x - 6 = 6 {x}^{2}  - 9 x +8 x - 12}

\sf{{\cancel6x^{2} } \:  + 5x - 6 = { \cancel6 {x}^{2} } - x - 12}

  \sf {5x + x =  - 12 + 6}

\sf{6x = -6}

\sf{x =  \frac{{ {\blue{\cancel - 6}}}}{{{\blue{ \cancel6}}}}}

\large{\boxed{\underline{\red{x = -1}}}}

\rule{200}{2}

Verification :-

_________________[Put values]

\sf{ \frac{2( - 1) + 3}{3( - 1) + 4}  =   \frac{2( - 1) - 3}{3( - 1) - 2} }

\sf{  \frac{ - 2 + 3}{ - 3 + 4}  =  \frac{ - 2 - 3}{ -  3 - 2}}

\sf{ \frac{ 1}{1}  =  \frac{{ {\orange{\cancel - 5}}}}{{{\orange{\cancel - 5}}}} }

\bf{1 = 1}

L. H. S = R. H. S

Hence proved


mysticd: Put the bracket both sides of the binomials after cross multiplication
mysticd: Put implies for each line
Answered by Anonymous
10

Question :-

Solve (2x + 3)/(3x + 4) = (2x - 3)/(3x - 2) and verify the answer.

Answer :-

 \sf  \dfrac{2x + 3}{3x + 4}  =  \dfrac{2x - 3}{3x - 2}

By cross multiplication

⇒ (2x + 3)(3x - 2) = (2x - 3)(3x + 4)

⇒ 2x(3x - 2) + 3(3x - 2) = 2x(3x + 4) - 3(3x + 4)

⇒ 6x² - 4x + 9x - 6 = 6x² + 8x - 9x - 12

Adding like terms

⇒ 6x² + 5x - 6 = 6x² - x - 12

⇒ 6x² + 5x - 6x² + x = - 12 + 6

⇒ 6x = - 6

⇒ x = - 6/6

x = - 1

Verification :-

 \sf  \dfrac{2x + 3}{3x + 4}  =  \dfrac{2x - 3}{3x - 2}  \\  \\  \\ \sf \dfrac{2( - 1) + 3}{3( - 1) + 4}  =  \dfrac{2( - 1) - 3}{3( - 1) - 2}  \\  \\  \\  \sf \dfrac{ - 2 + 3}{ - 3 + 4}  =  \dfrac{ - 2 - 3}{ - 3 - 2} \\  \\  \\  \sf  \dfrac{1}{1}  =  \dfrac{ - 5}{ - 5}  \\  \\  \\  \sf 1 = 1 \\  \\  \\  \tt LHS = RHS   \\  \\  \\  \bf \underline{ Hence  \: verified.}

Similar questions