Math, asked by shreyamore045, 11 months ago

please answer now please do it fast

Attachments:

Answers

Answered by dsouza11292
2

Answer:

use the suitable formulae mentioned in the page

Attachments:
Answered by shadowsabers03
4

On direct application of \sf{\theta=0,} we get indeterminate form.

Then by L'hospital's Rule,

\displaystyle\longrightarrow\sf{\lim_{\theta\to0} \dfrac {8\sin\theta-\theta\cos\theta}{3\tan\theta+\theta^2}=\lim_{\theta\to0}\dfrac {8\cos\theta+\theta\sin\theta-\cos\theta}{3\sec^2\theta+2\theta}}

\displaystyle\longrightarrow\sf{\lim_{\theta\to0} \dfrac {8\sin\theta-\theta\cos\theta}{3\tan\theta+\theta^2}=\dfrac {8\cos(0)+(0)\sin(0)-\cos(0)}{3\sec^2(0)+2(0)}}

\displaystyle\longrightarrow\sf{\underline {\underline {\lim_{\theta\to0} \dfrac {8\sin\theta-\theta\cos\theta}{3\tan\theta+\theta^2}=\dfrac {7}{3}}}}

Similar questions