Math, asked by deepak3597, 1 year ago

please answer of this question

Attachments:

deepak3597: please solve it

Answers

Answered by derankrivals
0

What is that!!!!!???????????

Answered by InesWalston
0

Solution-

L.H.S

=\frac{1}{\sec x -\tan x}-\frac{1}{\cos x}

=\frac{1\times (\sec x +\tan x)}{(\sec x -\tan x)\times (\sec x +\tan x)}-\frac{1}{\cos x}

=\frac{\sec x +\tan x}{\sec^2 x -\tan^2 x}-\frac{1}{\cos x}

=\frac{\sec x +\tan x}{1}-\frac{1}{\cos x}

=\sec x +\tan x-\frac{1}{\cos x}

=\frac{1+\sin x-1}{\cos x}

=\frac{\sin x}{\cos x}

=\tan x


R.H.S

=\frac{1}{\cos x}-\frac{1}{\sec x +\tan x}

=\frac{1}{\cos x}-\frac{1\times (\sec x -\tan x)}{(\sec x +\tan x)\times (\sec x -\tan x)}

=\frac{1}{\cos x}-\frac{\sec x -\tan x}{\sec^2 x -\tan^2 x}

=\frac{1}{\cos x}-\frac{\sec x -\tan x}{1}

=\frac{1}{\cos x}-\sec x -\tan x

=\frac{1-1+\sin x}{\cos x}

=\frac{\sin x}{\cos x}

=\tan x


∴L.H.S = R.H.S


Similar questions