Math, asked by sanjana885, 8 months ago

please answer please please please ... branliest answer will be marked...excuses will we reported​

Attachments:

Answers

Answered by suryakappala00765
0

Answer:

(b)

Hey, i have an idea put the options in place of a and b, if it gets zero then its the ans (as x value already given, x=1,3)

Answered by taqueerizwan2006
0

Step-by-step explanation:

9)a)

x +  \frac{7}{2}  >  \frac{5x}{3}  + 3 \\  \frac{7}{2}  - 3 >  \frac{5x}{3}  - x \\  \frac{7 - 6}{2} >  \frac{5x - 3x}{3}   \\  \frac{1}{2}  >  \frac{2x}{3}  \\ x <  \frac{3}{4}  \:  \:  \:  \: ans.

9)b)

let \:  \: f(x) = ax {}^{3}  - 3x {}^{2}  + bx + 3 \\ (x - 1) \:  \: so \:  \: taking \:  \: x = 1 \\ f(1) = a - 3 + b + 3 = 0 \:  \:  \:  \:  \:  \: (a =  - b) \:  \:  \: first \:  \: equation\\  because \:  \: (x - 1) \:  \: is \:  \: factor \: of \:  \: function \:  \: f(x) \\ now \:  \:  \:  \: (x - 3) \:  \: so \:  \:  \: taking \:  \: x = 3 \\ f(3) = 27a - 27 + 3b + 3  = 0 \\ 27a - 27 - 3a + 3 = 0 \\ 24a - 24 = 0 \:  \:  \:  \: so \:  \:  \: a = 1 \:  \:  \: and \:  \:  \:  \: b =  - 1 \:  \:  \:  \:  \:  \: ans.

Hope it will help you.

Similar questions