Physics, asked by chocolatelover01, 2 months ago

please answer properly
don't spam ! ​

Attachments:

Answers

Answered by BrainlyTwinklingstar
10

Given :

Mass of a particle = m

Distance from the rod = d

Mass of rod = M.

Length of rod = L

To find :

The gravitational force between mass and rod.

Solution :

Here, mass of rod length = M/L

mass of small element dm = M/L dx

Gravitational force :  \sf dF = \dfrac{Gm(dm)}{x^2}

\dashrightarrow \sf dF = \dfrac{Gm \bigg(\dfrac{M}{L} dx \bigg)}{x^2}

\dashrightarrow \displaystyle \sf F = \int \limits_ {d}^{(d + L)}\dfrac{Gm \bigg(\dfrac{M}{L} dx \bigg)}{x^2}

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L} \int \limits_ {d}^{(d + L)}\dfrac{ dx}{x^2}

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L}  \int \limits_ {d}^{(d + L)} {x}^{ - 2} dx

 \dashrightarrow\displaystyle \sf F = \dfrac{GmM}{L}  \bigg[ \dfrac{ {x}^{ - 1} }{ - 1} \bigg ]_ {d}^{(d + L)}

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L}  \bigg[ \dfrac{ - 1 }{x } \bigg ]_ {d}^{(d + L)}

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L}  \bigg[ \dfrac{  1 }{d }  -  \dfrac{1}{d + L} \bigg ]

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L}  \bigg[  \dfrac{d + L - d}{d(d + L)} \bigg ]

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{ \not{L}}  \bigg[  \dfrac{ \not{L}}{d(d + L)} \bigg ]

\dashrightarrow \underline{ \boxed{\sf F = \dfrac{GmM}{d(d + L)}}}

Thus, the gravitational force between mass and rod is \sf \dfrac{GmM}{d(d + L)}

Answered by Feirxefett
3

Given :

Mass of a particle = m

Distance from the rod = d

Mass of rod = M.

Length of rod = L

To find :

The gravitational force between mass and rod.

Solution :

Here, mass of rod length = M/L

mass of small element dm = M/L dx

Gravitational force :  \sf dF = \dfrac{Gm(dm)}{x^2}

\dashrightarrow \sf dF = \dfrac{Gm \bigg(\dfrac{M}{L} dx \bigg)}{x^2}

\dashrightarrow \displaystyle \sf F = \int \limits_ {d}^{(d + L)}\dfrac{Gm \bigg(\dfrac{M}{L} dx \bigg)}{x^2}

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L} \int \limits_ {d}^{(d + L)}\dfrac{ dx}{x^2}

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L}  \int \limits_ {d}^{(d + L)} {x}^{ - 2} dx

 \dashrightarrow\displaystyle \sf F = \dfrac{GmM}{L}  \bigg[ \dfrac{ {x}^{ - 1} }{ - 1} \bigg ]_ {d}^{(d + L)}

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L}  \bigg[ \dfrac{ - 1 }{x } \bigg ]_ {d}^{(d + L)}

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L}  \bigg[ \dfrac{  1 }{d }  -  \dfrac{1}{d + L} \bigg ]

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{L}  \bigg[  \dfrac{d + L - d}{d(d + L)} \bigg ]

\dashrightarrow \displaystyle \sf F = \dfrac{GmM}{ \not{L}}  \bigg[  \dfrac{ \not{L}}{d(d + L)} \bigg ]

\dashrightarrow \underline{ \boxed{\sf F = \dfrac{GmM}{d(d + L)}}}

Thus, the gravitational force between mass and rod is \sf \dfrac{GmM}{d(d + L)}

Similar questions