Math, asked by ayishamuad20, 8 months ago

Please answer!!!!
Prove LHS=RHS

Attachments:

Answers

Answered by prince5132
8

GIVEN :-

  • √(1 + cos A)/(1 - cos A) = (1 + cos A)/sin A.

TO PROVE :-

  • L.H.S = R.H.S.

SOLUTION :-

→ √(1 + cos A)/(1 - cos A) = (1 + cos A)/sin A

★ By Rationalizing the denominator in L.H.S Part,

→ √[(1 + cos A) (1 + cos A)/(1 - cos A) (1 + cos A)] = (1 + cos A)/sin A

→ √[( 1 + cos A)²/(1² - cos² A)] = (1 + cos A)/sin A.

→ [(1 + cos A)/√(1 - cos² A)] = (1 + cos A)/sin A.

By using identity:- 1 - cos² A = sin² A.

→ [(1 + cos A)/(√sin² A) = (1 + cos A)/sin A

→ (1 + cos A)/sin A = (1 + cos A)/sin A

L.H.S = R.H.S

❏ HENCE VERIFIED.

ADDITIONAL INFORMATION

→ sin² A + cos² A = 1.

→ tan² A = sin²A/cos²A.

→ cot² A = cos²A/sin²A.

Answered by adhyayan56
1

Step-by-step explanation:

√(1 + cos A)/(1 - cos A) = (1 + cos A)/sin A

By Rationalizing the denominator in L.H.S Part,

⟹√[(1 + cos A) (1+ cos A)/(1 - cos A) (1 + cos A)] = (1 + cos A)/sin A

⟹√[(1+ cos A)²/(12 - cos ²A)] = (1 + cos A)/sin A.

⟹[(1+ cos A)/b(1 - cos ²A)] = (1 + cos A)/sin A.

By using identity:- 1- cos²A = sin²A.

⟹[(1+ cos A)/(√sin ²A) = (1 + cos A)/sin A

⟹(1 + cos A)/sin A = (1 + cos A)/sin A

LHS=RHS

&lt;marquee behaviour- move&gt; &lt;font color ="red voilet"&gt;&lt;h1&gt;</strong><strong>clic</strong><strong>k</strong><strong> on</strong><strong> ♥️</strong><strong>♥️</strong><strong>&lt;/hy&gt; &lt;/marquee&gt;

Similar questions