Please answer!!!!
Prove LHS=RHS
Answers
GIVEN :-
- √(1 + cos A)/(1 - cos A) = (1 + cos A)/sin A.
TO PROVE :-
- L.H.S = R.H.S.
SOLUTION :-
→ √(1 + cos A)/(1 - cos A) = (1 + cos A)/sin A
★ By Rationalizing the denominator in L.H.S Part,
→ √[(1 + cos A) (1 + cos A)/(1 - cos A) (1 + cos A)] = (1 + cos A)/sin A
→ √[( 1 + cos A)²/(1² - cos² A)] = (1 + cos A)/sin A.
→ [(1 + cos A)/√(1 - cos² A)] = (1 + cos A)/sin A.
★ By using identity:- 1 - cos² A = sin² A.
→ [(1 + cos A)/(√sin² A) = (1 + cos A)/sin A
→ (1 + cos A)/sin A = (1 + cos A)/sin A
L.H.S = R.H.S
❏ HENCE VERIFIED.
★ ADDITIONAL INFORMATION ★
→ sin² A + cos² A = 1.
→ tan² A = sin²A/cos²A.
→ cot² A = cos²A/sin²A.
Step-by-step explanation:
√(1 + cos A)/(1 - cos A) = (1 + cos A)/sin A
By Rationalizing the denominator in L.H.S Part,
⟹√[(1 + cos A) (1+ cos A)/(1 - cos A) (1 + cos A)] = (1 + cos A)/sin A
⟹√[(1+ cos A)²/(12 - cos ²A)] = (1 + cos A)/sin A.
⟹[(1+ cos A)/b(1 - cos ²A)] = (1 + cos A)/sin A.
By using identity:- 1- cos²A = sin²A.
⟹[(1+ cos A)/(√sin ²A) = (1 + cos A)/sin A
⟹(1 + cos A)/sin A = (1 + cos A)/sin A
LHS=RHS