Math, asked by sarthakgarg1005, 1 month ago

please answer q25 with detailed solution

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

If

\rm :\longmapsto\:A + B + C = \pi

Prove that

\rm :\longmapsto\:\dfrac{cosA}{sinBsinC}  + \dfrac{cosB}{sinCsinA}  + \dfrac{cosC}{sinAsinB}  = 2

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:\dfrac{cosA}{sinBsinC}  + \dfrac{cosB}{sinCsinA}  + \dfrac{cosC}{sinAsinB}

\rm \:  =  \:\dfrac{sinAcosA + sinBcosB + sinCcosC}{sinAsinBsinC}

On multiply and divide by 2, we get

\rm \:  =  \:\dfrac{2sinAcosA +2 sinBcosB +2 sinCcosC}{2sinAsinBsinC}

We know,

 \boxed{ \bf{ \: sin2x = 2sinxcosx}}

So, using this we get

 \red{\rm \:  =  \:\dfrac{sin2A + sin2B + sin2C}{2sinAsinBsinC}  -  -  - (1)}

Now, Consider,

\rm :\longmapsto\:sin2A + sin2B + sin2C

We know,

 \boxed{ \bf{ \: sinx + siny = 2sin\bigg(\dfrac{x + y}{2}  \bigg)cos\bigg(\dfrac{x - y}{2}  \bigg)}}

So, on using this identity, we get

\rm \:  =  \:2sin\bigg(\dfrac{2A + 2B}{2}  \bigg)cos\bigg(\dfrac{2A - 2B}{2}  \bigg) + sin2C

\rm \:  =  \:2sin(A +B)cos(A - B) + sin2C

It is given that

\rm :\longmapsto\:A + B + C = \pi

So,

\rm \:  =  \:2sin(\pi - C)cos(A - B) + sin2C

\rm \:  =  \:2sinCcos(A - B) + 2sinCcosC

\rm \:  =  \:2sinC\bigg(cos(A - B) + cosC\bigg)

\rm \:  =  \:2sinC\bigg(cos(A - B) + cos(\pi - (A + B))\bigg)

\rm \:  =  \:2sinC\bigg(cos(A - B)  -  cos(A + B)\bigg)

We know,

 \boxed{ \bf{ \: cos(x - y) - cos(x + y) = 2sinx \: siny}}

So, using this, we get

\rm \:  =  \:2sinA(2sinBsinC)

\rm \:  =  \:4sinAsinBsinC

So, we have

 \red{ \boxed{ \sf{ \:sin2A + sin2B + sin2C = 4sinAsinBsinC }}}

So, from equation (1), we have

\rm \:  =  \:\dfrac{sin2A + sin2B + sin2C}{2sinAsinBsinC}

\rm \:  =  \:\dfrac{4sinAsinBsinC}{2sinAsinBsinC}

\rm \:  =  \:2

Hence,

\rm :\longmapsto\: \boxed{ \bf{ \: \dfrac{cosA}{sinBsinC}  + \dfrac{cosB}{sinCsinA}  + \dfrac{cosC}{sinAsinB}  = 2}}

Additional Information :-

 \boxed{ \bf{ \: sinx - siny = 2cos\bigg(\dfrac{x + y}{2}  \bigg)sin\bigg(\dfrac{x - y}{2}  \bigg)}}

 \boxed{ \bf{ \: cosx +  cosy = 2cos\bigg(\dfrac{x + y}{2}  \bigg)cos\bigg(\dfrac{x - y}{2}  \bigg)}}

 \boxed{ \bf{ \: cosx - cosy = 2sin\bigg(\dfrac{x + y}{2}  \bigg)sin\bigg(\dfrac{y - x}{2}  \bigg)}}

 \boxed{ \bf{ \: 2sinxcosy = sin(x + y) + sin(x - y)}}

 \boxed{ \bf{ \: 2cosxcosy = cos(x + y) + cos(x - y)}}

Similar questions