Math, asked by abhilashrao89, 8 months ago

please answer quality answers will be marked as brainliest ​

Attachments:

Answers

Answered by battuadityarao
1

Answer:

\huge\bold\red{ANSWER}

Step-by-step explanation:

\blue{\bold{\underline{\underline{GIVEN :}}}}

\implies \sf \frac{x}{y}=\frac{cosA}{cosB} \\ \\ \implies \sf Asking\:to\:find\: \frac{xtanA+ytanB}{x+y}

\large{\underline{\rm{\red{SOLUTION :}}}}

\implies \sf \frac{x}{cosA}=\frac{y}{cosB}=K

\implies \sf x=kcosA\\ \\ y=kcosB

\implies \sf \frac{xtanA+ytanB}{x+y}=\frac{(kcosA)\frac{sinA}{cosA}+(kcosB)\frac{sinB}{cosB}}{kcosA+kcosB}

                        \sf =\frac{k(sinA+sinB)}{k(cosA+cosB)}

                        \sf =\frac{2 sin[\frac{A+B}{2}]cos[\frac{A-B}{2}]}{2 cos[\frac{A+B}{2}]cos[\frac{A-B}{2}]}

                        \sf =tan[\frac{A+B}{2}]

Similar questions