Math, asked by anmolthkur981, 9 months ago

please answer question 2​

Attachments:

Answers

Answered by Anonymous
1

\Large{\underline{\underline{\bf{Solution :}}}}

Given :

QP = 12 cm

PR = 13 cm

__________________________

To Find :

We have ro find the value of tan P - cot R.

__________________________

Solution :

Firstly, we will find QR by using Pythagoras theorm.

We know that,

\Large{\implies{\boxed{\boxed{\sf{(PR)^2 = (QR)^2 + (PQ)^2}}}}} \\ \\ \sf{→ (13)^2 = (QR)^2 + (12)^2} \\ \\ \sf{→(QR)^2 = 169 - 144} \\ \\ \sf{→QR = \sqrt{25}} \\ \\ \sf{→QR = 5 \: cm}

\rule{150}{2}

Now,

\sf{→ tan \: p = \frac{QR}{PQ}} \\ \\ \sf{→tan \: p = \frac{5}{12}......(1)}

\rule{150}{2}

\sf{→ cot \: R = \frac{QR}{PQ}} \\ \\ \sf{→ cot \: R = \frac{5}{12}......(2)}

\rule{200}{2}

Using equation (1) and (2).

We get,

\sf{→tan \: P - cot \: R = \frac{5}{12} - \frac{5}{12}} \\ \\ \sf{→ tan \: P - cot \: R = 0}

Attachments:
Similar questions