Please answer question 80
Answers
Step-by-step explanation:
Here 4cosθ - 3sinθ = 5
Method 1. Using Differentiation
Differentiating the above equation,we get
4* d(cosθ)/dθ - 3* d(sinθ)/dθ = d(5)/dθ
⇒ -4sinθ - 3cosθ = 0
⇒ 4sinθ + 3cosθ = 0
Hence proved.
Method 2. Using tigonometry
Trigonometric Identity used
1. cos(x+y) = cos(x)cos(y) - sin(x)sin(y)
2. sin(x+y) = sin(x)cos(y) + cos(x)sin(y)
Now 4cosθ - 3sinθ = 5
⇒ cosθ*(4/5) - 3sinθ*3/5 = 1
⇒ cosθ*cosφ- sinθ*sinφ= 1
where cosφ = 4/5, sinφ = 3/5
⇒ cos(θ+φ) = 1 = cos(0)
⇒ θ +φ = 0
And LHS = 4sinθ + 3cosθ
= 5*(sinθ*(4/5) + cosθ*(3/5))
= 5*(sinθ*cosφ + cosθ*sinφ)
= 5*sin(θ+φ)
= 5*sin(0)
= 5*0
= 0 = RHS
Hence Proved.
Answer:
If 3sinθ+4cosθ=5,then prove that
4sinθ−3cosθ=0
We have,
3sinθ + 4cosθ = 5 ------------------1
On squaring on both sides,
( 3sinθ + 4cosθ )² = 5²
9sin²θ + 16cos²θ + 24sinθcosθ = 25
9(1−cos²θ)+16(1−sin²θ)+12×2sinθcosθ=25
9−9cos²θ+16−16sin²θ+12×2sinθcosθ=25
25−9cos²θ−16sin²θ+12×2sinθcosθ=25
9cos²θ + 16sin²θ − 12×2sinθcosθ = 0
(3cosθ−4sinθ)²=0
3cosθ−4sinθ=0