Math, asked by aashi05asmi, 10 months ago

Please answer question no.2

Attachments:

Answers

Answered by amitkumar44481
7

Question :

If alpha , beta and gamma are Zeros of polynomial P( x ) = 6x³ + 3x² = 5x + 1, then find the value of alpha^-1 + beta^-1 and gamma^-1.

AnsWer :

- 5.

Solution :

We have, Cubic Polynomial.

 \tt \dagger \:  \:  \:  \:  \: 6 {x}^{3}  + 3 {x}^{2}  = 5x + 1.

 \tt \dagger \:  \:  \:  \:  \: 6 {x}^{3}  + 3 {x}^{2}   -  5x  -  1 = 0.

General Equation,

 \tt \dagger \:  \:  \:  \:  \:   {a}^{3}  + b {x}^{2}  + cx + d

 \tt \dagger \:  \:  \:  \:  \:  \red{a \neq0.}

Where as,

  • a = 6.
  • b = 3.
  • c = - 5.
  • d = - 1.

A/Q,

 \tt \dagger \:  \:  \:  \:  \:  { \alpha }^{ - 1}  +  { \beta }^{ - 1}  +  { \gamma }^{ - 1}

 \tt :  \implies  \dfrac{1}{ \alpha }  +  \dfrac{1}{ \beta }  +  \dfrac{1}{ \gamma }

\tt :  \implies  \dfrac{ \alpha  \beta  +  \beta \gamma   +  \gamma \alpha  }{ \alpha \beta  \gamma  }

\tt :  \implies  \dfrac{  \dfrac{c}{a}   }{  \dfrac{ - d}{a}   }

\tt :  \implies  \dfrac{c}{ - d}

\tt :  \implies   \dfrac{ - 5}{1}

\tt :  \implies   - 5.

Therefore, the value of required answer is - 5.

Some Information :

 \tt \alpha  \beta  +  \beta \gamma   +  \gamma \alpha = \dfrac{c}{a}

 \tt \alpha \beta \gamma   = \dfrac{-d}{a}

 \tt \alpha  +  \beta  +  \gamma  = \dfrac{-b}{a}

Similar questions