Math, asked by wwwyuchavan1213, 1 year ago

Please answer quick because tomorrow is my exam
 \frac{ \sqrt{ \frac{a}{b} + x }  +  \sqrt{ \frac{a}{b}  - x} }{ \sqrt{ \frac{a}{b}  + x} -  \sqrt{ \frac{a}{b}  - x}  }  = c
then bx = ?​

Answers

Answered by IamIronMan0
0

Answer:

Use rationalization

 \frac{ \sqrt{ \frac{a}{b}  + x} +  \sqrt{ \frac{a}{b}   - x } }{\sqrt{ \frac{a}{b}  + x}  -   \sqrt{ \frac{a}{b}   - x } }  \times  \frac{\sqrt{ \frac{a}{b}  + x} +  \sqrt{ \frac{a}{b}   - x } }{\sqrt{ \frac{a}{b}  + x} +  \sqrt{ \frac{a}{b}   - x } }  \\ \\   =  \frac{(\sqrt{ \frac{a}{b}  + x} +  \sqrt{ \frac{a}{b}   - x })  {}^{2} }{(\sqrt{ \frac{a}{b}  + x}) {}^{2}   -   (\sqrt{ \frac{a}{b}   - x } ) {}^{2} }  \\  \\  =  \frac{ \frac{a}{b} + x +  \frac{a}{b}  - x  + 2 \sqrt{( \frac{a}{b} + x) (  \frac{a}{b}  - x)}}{ \frac{a}{b} + x  - (  \frac{a}{b}  - x)}  \\  \\  =  \frac{ \frac{2a}{b}  + 2 \sqrt{ {( \frac{a}{b}) }^{2}  -  {x}^{2} } }{2x}  \times  \frac{b}{b}  \\  \\  =  \frac{a +  \sqrt{ {a}^{2} -  {b}^{2} {x}^{2}   } }{bx}

Similar questions