Math, asked by renur6886, 11 months ago

please answer quickly friends.​

Attachments:

Answers

Answered by kaushik05
55

  \huge\mathfrak{\red{solution}}

To prove:

  \boxed{ \bold{\sqrt{ \frac{1 + cos \theta}{1 - cos \theta} }  = cosec \theta + cot \theta}}

LHS

 \ \sqrt{ \frac{1 + cos \theta}{1 - cos \theta \: } }  \\  \\

Rationalise the denominator.

 \rightarrow \:  \sqrt{ \frac{1 + cos \theta}{ 1 -cos \theta } \times  \frac{1 + cos \theta}{1  + cos \theta}  }  \\  \\  \rightarrow \:  \sqrt{ \frac{( 1 + cos \theta) ^{2} }{( {1 - cos^{2} \theta})} }  \\  \\  \rightarrow  \sqrt{ \frac{ {(1 + cos \theta)}^{2} }{ {sin}^{2 } \theta } }  \\  \\  \rightarrow \:  \frac{1 + cos \theta}{sin \theta}  \\  \\  \rightarrow \:  \frac{1}{sin \theta}  +  \frac{cos \theta}{sin \theta}  \\  \\  \rightarrow \: cosec \theta + cot \theta

LHS = RHS

  \huge\bold{proved}

Formula used :

 \boxed{ \bold{(x + y)(x - y) =  {x}^{2}  -  {y}^{2} } }

  \boxed{ \bold{{sin}^{2}  \theta +  {cos}^{2}  \theta = 1}}

Answered by manojtalmale81
10

following answer.

please follow me...

Attachments:
Similar questions