Math, asked by karthik2824, 5 months ago

please answer soon !​

Attachments:

Answers

Answered by Bidikha
8

Question -

find \: the \: value \: of \: x \: satisfying \\  ({ \sqrt{3} )}^{ - 4 + 2 log\sqrt{5}  x}  =  \frac{1}{9}

Solution -

 {( \sqrt{3}) }^{ - 4 + 2 log \sqrt{5} x }  =  \frac{1}{9}

 {( \sqrt{3} )}^{ - 4 + 2log \sqrt{5}x }  =  {9}^{ - 1}

 {( \sqrt{3}) }^{ - 4 + 2log \sqrt{5} x}  = 3 {}^{ - 2}

 {( \sqrt{3}) }^{ - 4 + 2log \sqrt{5}x }  =  ({ \sqrt{3}) }^{ - 4}

By equating,

 - 4 + 2log \sqrt{5} x =  - 4

2log \sqrt{5} x = 0

log \sqrt{5} x = 0

Taking exponential of the above equation we will get -

x =  {( \sqrt{5} )}^{0}

x = 1

Therefore the value of x is 1

Similar questions