Math, asked by riyakadam174, 1 month ago

please answer step by step​

Attachments:

Answers

Answered by himanipt7
4

Answer:

(B) \frac{294}{251\\}  

Step-by-step explanation:

P(x)=\frac{c}{x^{3} }  ; x = 1,2,3

       = 0       otherwise

P(1)+P(2)+P(3)=1

\frac{C}{1^{3} } +\frac{C}{2^{3} } +\frac{C}{3^{3} } =1\\\\C\times(\frac{1}{1^{3} } +\frac{1}{2^{3} } +\frac{1}{3^{3} } )=1

C\times(1+\frac{1}{8} +\frac{1}{27} )=1\\\\C\times(\frac{8\times27+8+27}{8\times27} )=1

C\times(\frac{251}{8\times27} )=1

C=\frac{8\times27}{251}

E(x)=?

E(x) = ∑ [ xi × P(xi) ]

x=1,2,3

E(x)=1\times P(1)+2\times P(2)+3\times P(3)

       =1\times \frac{C}{1^{3} } +2\times \frac{C}{2^{3} } +3\times \frac{C}{3^{3} }

C\times (\frac{1}{1^{3} } +\frac{2}{2^{3} } +\frac{3}{3^{3} } ) = C\times(\frac{1}{1^{2} } +\frac{1}{2^{2} } +\frac{1}{3^{2} } )

=\frac{8\times27}{251} \times (1+\frac{1}{4} +\frac{1}{9} )

= (\frac{294}{251} )

Similar questions